• 제목/요약/키워드: damage condition

검색결과 2,002건 처리시간 0.027초

Condition assessment of raking damaged bulk carriers under vertical bending moments

  • Kim, Do Kyun;Yub, Su Young;Choi, Han Suk
    • Structural Engineering and Mechanics
    • /
    • 제46권5호
    • /
    • pp.629-644
    • /
    • 2013
  • This paper concerns about the raking damages on the ultimate residual hull girder strength of bulk carriers by applying the modified R-D diagram (advanced method). The limited raking damage scenarios, based on the IMO's probability density function of grounding accidents, were carried out by using sampling technique. Recently, innovative method for the evaluation of the structural condition assessment, which covers the residual strength and damage index diagram (R-D diagram), was proposed by Paik et al. (2012). This concept is applied in the present study and modified R-D diagram, which can be considered vessel size effect, is then proposed. Four different types of bulk carrier structures, i.e., Handysize (37K), Supramax (57K), Kamsarmax (82K) and Capesize (181K) by Common Structural Rule (CSR), were applied to draw the general tendency. The ALPS/HULL, intelligent supersize finite element method, was employed for the ultimate longitudinal strength analysis. The obtained empirical formulas will be useful for the condition assessment of bulk carrier structures. It can also cover different sizes of the bulk carriers in terms of ultimate longitudinal strength. Important insights and findings with useful guidelines developed in this study are summarized.

고속도로 교량의 상태 분석에 근거한 점검 활동 개선에 관한 연구 (A Study on Improvement of Inspection Activity Based upon Condition Analysis of Expressway Bridges)

  • 전준창;이일근;박창호;이희현
    • 대한토목학회논문집
    • /
    • 제37권1호
    • /
    • pp.19-28
    • /
    • 2017
  • 이 논문에서는, 1996년부터 2010년까지 915개 고속도로 교량에 대해 실시된 정밀안전진단 보고서를 수집하여 이들 교량의 상태를 분석하였다. 분석시 손상을, 결함, 물리력 및 열화에 의한 손상으로 구분하여 손상이 많이 발생하는 시기를 조사하고, 유손상율의 개념을 도입하여 손상의 특징을 조사하였으며, 고속도로 교량의 10대 손상, 다설한랭지역 교량과 일반지역 교량의 열화특성을 비교하여 합리적인 점검활동 개선 방향을 제시하였다. 연구결과, 시공시 실시하는 점검 또는 초기점검 제도 개선이 필요하고, 다설한랭지역의 경우 열화진행 속도가 빠르므로 주변 환경의 특성을 고려한 점검 활동 개선이 필요한 것으로 판단되었다. 이 연구 결과는 향후 고속도로 교량의 점검 활동 개선을 위해 널리 활용될 수 있을 것이다.

Short-term fatigue analysis for tower base of a spar-type wind turbine under stochastic wind-wave loads

  • Li, Haoran;Hu, Zhiqiang;Wang, Jin;Meng, Xiangyin
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제10권1호
    • /
    • pp.9-20
    • /
    • 2018
  • Due to integrated stochastic wind and wave loads, the supporting platform of a Floating Offshore Wind Turbine (FOWT) has to bear six Degrees of Freedom (DOF) motion, which makes the random cyclic loads acting on the structural components, for instance the tower base, more complicated than those on bottom-fixed or land-based wind turbines. These cyclic loads may cause unexpected fatigue damages on a FOWT. This paper presents a study on short-term fatigue damage at the tower base of a 5 MW FOWT with a spar-type platform. Fully coupled time-domain simulations code FAST is used and realistic environment conditions are considered to obtain the loads and structural stresses at the tower base. Then the cumulative fatigue damage is calculated based on rainflow counting method and Miner's rule. Moreover, the effects of the simulation length, the wind-wave misalignment, the wind-only condition and the wave-only condition on the fatigue damage are investigated. It is found that the wind and wave induced loads affect the tower base's axial stress separately and in a decoupled way, and the wave-induced fatigue damage is greater than that induced by the wind loads. Under the environment conditions with rated wind speed, the tower base experiences the highest fatigue damage when the joint probability of the wind and wave is included in the calculation. Moreover, it is also found that 1 h simulation length is sufficient to give an appropriate fatigue damage estimated life for FOWT.

피로거동파악을 위한 성능향상된 교량상판의 사전피로손상의 고찰 (Pre-fatigue Damage of the Strengthened Bridge Deck for Study on Fatigue Behavior)

  • 심종성;오홍섭;김진하
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2000년도 가을 학술발표회논문집(I)
    • /
    • pp.697-700
    • /
    • 2000
  • Fatigue damage to reinforced concrete bridge decks have been found in many bridges. Failure mode of most reinforced concrete decks is caused by local punching shear rather than flexural moment due to cumulated damage. In this study, mechanical degradation of unstrengthened and strengthened bridge deck specimens is experimentally investigated. The unstrengthened deck specimens were damaged under the pulsating loading condition. After the test, deteriorated deck specimens were strengthened with Carbon Fiber Sheet, then loaded to observe the improvement of the fatigue behavior. It is shown that fatigue damaged specimens are similar to real bridge rather than static damaged specimens.

  • PDF

Damage identification in laminated composite plates using a new multi-step approach

  • Fallah, Narges;Vaez, Seyed Rohollah Hoseini;Fasihi, Hossein
    • Steel and Composite Structures
    • /
    • 제29권1호
    • /
    • pp.139-149
    • /
    • 2018
  • In this paper a new multi-step damage detection approach is provided. In the first step, condensed modal residual vector based indicator (CMRVBI) has been proposed to locate the suspected damaged elements of structures that have rotational degrees of freedom (DOFs). The CMRVBI is a new indicator that uses only translational DOFs of the structures to localize damaged elements. In the next step, salp swarm algorithm is applied to quantify damage severity of the suspected damaged elements. In order to assess the performance of the proposed approach, a numerical example including a three-layer square laminated composite plate is studied. The numerical results demonstrated that the proposed CMRVBI is effective for locating damage, regardless of the effect of noise. The efficiency of proposed approach is also compared during both steps. The results demonstrate that in noisy condition, the damage identification approach is capable for the studied structure.

국부손상을 이용한 RC교각의 지진위험도 분석 (Seismic Risk Analysis of Reinforced Concrete Bridge Piers using Local Damage)

  • 이대형;김현준;박창규;정영수
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 춘계학술발표회 논문집(I)
    • /
    • pp.194-197
    • /
    • 2006
  • This study represents results of fragility curve development for 4-span continuous bridge. 2 type bridge model is chosen frame type and 2-roller 1-hinge type. To research the response of bridge under earthquake excitation, Monte Carlo simulation is performed to study nonlinear dynamic analysis. For nonlinear time history analysis a set of 150 synthetic time histories were generated. Fragility curves in this study are represented by lognormal distribution functions with two parameters and developed as a function of PGA. Five damage states were defined to express the condition of damage based on the actual experimental damage data of bridge column. As a result of this research, the value of damage probability corresponding to each damage state were determined and frame type bridge are favorable under seismic event.

  • PDF

A near and far-field monitoring technique for damage detection in concrete structures

  • Providakis, Costas;Stefanaki, K.;Voutetaki, M.;Tsompanakis, J.;Stavroulaki, M.
    • Structural Monitoring and Maintenance
    • /
    • 제1권2호
    • /
    • pp.159-171
    • /
    • 2014
  • Real-time near and far-field monitoring of concrete structural components gives enough information on the time and condition at which damage occurs, thereby facilitating damage detection while in the same time evaluate the cause of the damage. This paper experimentally investigates an integrated monitoring technique for near and far-field damage detection in concrete structures based on simultaneous use of electromechanical admittance technique in combination with guided wave propagation. The proposed sensing system does not measure the electromechanical admittance itself but detect time variations in output voltages of the response signal obtained across the electrodes of piezoelectric transducers bonded on surfaces of concrete structures. The damage identification is based on the spectral estimation MUSIC algorithm. Experimental results show the efficiency and performance of the proposed measuring technique.

남한산성 여장 손상원인 분석 (Factor Analysis of Deterioration in Namhansanseong Yeojang)

  • 정광용;이상옥;양희제
    • 건축역사연구
    • /
    • 제25권1호
    • /
    • pp.59-68
    • /
    • 2016
  • There are many reasons of damage in Namhansanseong Yeojang. Lots of damage types are observed in each Yeojang. There are many types of damage factors but major damage factor is breakage by freezing and thawing. So Conduct non-destructive evaluation about damage factors in Namhansanseong Yeojang to analysis weathering factors in Yeojang by measuring directional microclimate. The study will pave the way for conservation management in Namhansanseong by suggesting the conservation calendar about weather condition and damage factors.

Anisotropic continuum damage analysis of thin-walled pressure vessels under cyclic thermo-mechanical loading

  • Surmiri, Azam;Nayebi, Ali;Rokhgireh, Hojjatollah;Varvani-Farahani, Ahmad
    • Structural Engineering and Mechanics
    • /
    • 제75권1호
    • /
    • pp.101-108
    • /
    • 2020
  • The present study intends to analyze damage in thin-walled steel cylinders undergoing constant internal pressure and thermal cycles through use of anisotropic continuum damage mechanics (CDM) model coupled with nonlinear kinematic hardening rule of Chaboche. Materials damage in each direction was defined based on plastic strain and its direction. Stress and strain distribution over wall-thickness was described based on the CDM model and the return mapping algorithm was employed based on the consistency condition. Plastic zone expansion across the wall thickness of cylinders was noticeably affected with change in internal pressure and temperature gradients. Expansion of plastic zone over wall-thickness at inner and outer surfaces and their boundaries demarking elastic and plastic regions was attributed to the magnitude of damage induced over thermomechanical cycles on the thin-walled samples tested at various pressure stresses.

가스터빈 내부 냉각계통 발화에 의한 고온부품 손상의 현상학적 고찰 (A Phenomenological Review on the Damage of Hot Gas Parts caused by Explosion of Gas Turbine Cooling System)

  • 유원주;이승현
    • 대한안전경영과학회지
    • /
    • 제12권2호
    • /
    • pp.75-82
    • /
    • 2010
  • Gas turbines for power generating operate in a very high temperature condition and use natural gas for fuel. For this reason, many cases of damage happen at hot gas parts which are severely affected by high temperature gas and many cases of explosion occur by fuel gas. So a lot of efforts should be made to prevent hot gas parts damage and gas explosion accidents. Though there are many damage cases and explosion accidents, it is very difficult to find out the root causes of hot gas parts damage caused by gas explosion due to gas leakage in the heat exchanger for air cooling and gas heating. To prevent gas turbine from damage caused by gas explosion, removal of leakage gas from gas turbine is inevitably required before firing the gas turbine and installing alarm systems is also required for detecting gas leakage at stop valve to turbine while shut down.