DOI QR코드

DOI QR Code

Damage identification in laminated composite plates using a new multi-step approach

  • Fallah, Narges (Department of Civil Engineering, Faculty of Engineering, University of Qom) ;
  • Vaez, Seyed Rohollah Hoseini (Department of Civil Engineering, Faculty of Engineering, University of Qom) ;
  • Fasihi, Hossein (Department of Civil Engineering, Faculty of Engineering, University of Qom)
  • Received : 2018.06.08
  • Accepted : 2018.08.10
  • Published : 2018.10.10

Abstract

In this paper a new multi-step damage detection approach is provided. In the first step, condensed modal residual vector based indicator (CMRVBI) has been proposed to locate the suspected damaged elements of structures that have rotational degrees of freedom (DOFs). The CMRVBI is a new indicator that uses only translational DOFs of the structures to localize damaged elements. In the next step, salp swarm algorithm is applied to quantify damage severity of the suspected damaged elements. In order to assess the performance of the proposed approach, a numerical example including a three-layer square laminated composite plate is studied. The numerical results demonstrated that the proposed CMRVBI is effective for locating damage, regardless of the effect of noise. The efficiency of proposed approach is also compared during both steps. The results demonstrate that in noisy condition, the damage identification approach is capable for the studied structure.

Keywords

References

  1. Anderson, P.A. and Bone, Q. (1980), "Communication between individuals in salp chains. II. Physiology", Proc. R. Soc. Lond. B.
  2. Back, T. and Schwefel, H.-P. (1993), "An overview of evolutionary algorithms for parameter optimization", Evolut. Computat., 1(1), 1-23. https://doi.org/10.1162/evco.1993.1.1.1
  3. Beasley, D., Martin, R. and Bull, D. (1993a), "An overview of genetic algorithms: Part 1. Fundamentals", Univ. Comput., 15, 58-58.
  4. Beasley, D., Bull, D.R. and Martin, R.R. (1993b), "An overview of genetic algorithms: Part 2, research topics", Univ. Comput., 15(4), 170-181.
  5. Blickle, T. and Thiele, L. (1995), A Comparison of Selection Schemes used in Genetic Algorithms, TIK-Report.
  6. Carden, E.P. and Fanning, P. (2004), "Vibration based condition monitoring: a review", Struct. Health Monitor., 3(4), 355-377. https://doi.org/10.1177/1475921704047500
  7. Carvalho, J., Datta, B.N., Gupta, A. and Lagadapati, M. (2007), "A direct method for model updating with incomplete measured data and without spurious modes", Mech. Syst. Signal Process., 21(7), 2715-2731. https://doi.org/10.1016/j.ymssp.2007.03.001
  8. Doebling, S.W., Farrar, C.R., Prime, M.B. and Shevitz, D.W. (1996), Damage Identification and Health Monitoring of Structural and Mechanical Systems from Changes in their Vibration Characteristics: a Literature Review, Los Alamos National Lab., NM, USA.
  9. Fallah, N., Vaez, S.R.H. and Mohammadzadeh, A. (2018), "Multidamage identification of large-scale truss structures using a twostep approach", J. Build. Eng., 19, 494-505. https://doi.org/10.1016/j.jobe.2018.06.007
  10. Fan, W. and Qiao, P. (2011), "Vibration-based damage identification methods: a review and comparative study", Struct. Health Monitor., 10(1), 83-111. https://doi.org/10.1177/1475921710365419
  11. Ferreira, A., Castro, L.M. and Bertoluzza, S. (2009), "A high order collocation method for the static and vibration analysis of composite plates using a first-order theory", Compos. Struct., 89(3), 424-432. https://doi.org/10.1016/j.compstruct.2008.09.006
  12. Guyan, R.J. (1965), "Reduction of stiffness and mass matrices", AIAA Journal, 3(2), 380. https://doi.org/10.2514/3.2874
  13. Holland, J.H. (1975), Adaptation in Natural and Artificial Systems: an Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence, University of Michigan Press
  14. Hoseini Vaez, S.R. and Fallah, N. (2017), "Damage Detection of Thin Plates Using GA-PSO Algorithm Based on Modal Data", Arab. J. Sci. Eng., 42(3), 1251-1263. https://doi.org/10.1007/s13369-016-2398-6
  15. Hoseini Vaez, S.R. and Fallah, N. (2018), "Damage identification of a 2D frame structure using two-stage approach", J. Mech. Sci. Technol., 32(3), 1125-1133. https://doi.org/10.1007/s12206-018-0215-8
  16. Humar, J., Bagchi, A. and Xu, H. (2006), "Performance of vibration-based techniques for the identification of structural damage", Struct. Health Monitor., 5(3), 215-241. https://doi.org/10.1177/1475921706067738
  17. Kaveh, A., Hoseini Vaez, S.R., Hosseini, P. and Fallah, N. (2016), "Detection of damage in truss structures using Simplified Dolphin Echolocation algorithm based on modal data", Smart Struct. Syst., Int. J., 18(5), 983-1004. https://doi.org/10.12989/sss.2016.18.5.983
  18. Laier, J. and Villalba, J. (2015), "Ensuring reliable damage detection based on the computation of the optimal quantity of required modal data", Comput. Struct., 147, 117-125. https://doi.org/10.1016/j.compstruc.2014.09.020
  19. Mares, C. and Surace, C. (1996), "An application of genetic algorithms to identify damage in elastic structures", J. Sound Vib., 195(2), 195-215. https://doi.org/10.1006/jsvi.1996.0416
  20. Michalawicz, Z. (1996), Genetic Algorithms+ Data Structures= Evolution Programs, Springer-Verlag, Berlin, Germany.
  21. Mirjalili, S., Mirjalili, S.M. and Yang, X.-S. (2014a), "Binary bat algorithm", Neural Comput. Appl., 25(3-4), 663-681. https://doi.org/10.1007/s00521-013-1525-5
  22. Mirjalili, S., Mirjalili, S.M. and Lewis, A. (2014b), "Grey wolf optimizer", Adv. Eng. Software, 69, 46-61. https://doi.org/10.1016/j.advengsoft.2013.12.007
  23. Mirjalili, S., Gandomi, A.H., Mirjalili, S.Z., Saremi, S., Faris, H. and Mirjalili, S.M. (2017), "Salp Swarm Algorithm: A bioinspired optimizer for engineering design problems", Adv. Eng. Software, 114, 163-191. https://doi.org/10.1016/j.advengsoft.2017.07.002
  24. Montalvao, D., Maia, N.M.M. and Ribeiro, A.M.R. (2006), "A review of vibration-based structural health monitoring with special emphasis on composite materials", Shock Vib Digest., 38(4), 295-324. https://doi.org/10.1177/0583102406065898
  25. Mousavi, M. and Gandomi, A.H. (2016), "A hybrid damage detection method using dynamic-reduction transformation matrix and modal force error", Eng. Struct., 111, 425-434. https://doi.org/10.1016/j.engstruct.2015.12.033
  26. Nobahari, M., Ghasemi, M.R. and Shabakhty, N. (2017), "Truss structure damage identification using residual force vector and genetic algorithm", Steel Compos. Struct., Int. J., 25(4), 485-496.
  27. O'Callahan, J.C. (1989), "A procedure for an improved reduced system (IRS) model", Proceedings of the 7th International Modal Analysis Conference.
  28. Pedram, M., Esfandiari, A. and Khedmati, M.R. (2017), "Damage detection by a FE model updating method using power spectral density: Numerical and experimental investigation", J. Sound Vib., 397, 51-76. https://doi.org/10.1016/j.jsv.2017.02.052
  29. Perera, R., Ruiz, A. and Manzano, C. (2009), "Performance assessment of multicriteria damage identification genetic algorithms", Comput. Struct., 87(1-2), 120-127. https://doi.org/10.1016/j.compstruc.2008.07.003
  30. Salawu, O. (1997), "Detection of structural damage through changes in frequency: a review", Eng. Struct., 19(9), 718-723. https://doi.org/10.1016/S0141-0296(96)00149-6
  31. Seyedpoor, S.M. and Montazer, M. (2016), "A two-stage damage detection method for truss structures using a modal residual vector based indicator and differential evolution algorithm", Smart Struct. Syst., Int. J., 17(2), 347-361. https://doi.org/10.12989/sss.2016.17.2.347
  32. Vo-Duy, T., Ho-Huu, V., Dang-Trung, H., Dinh-Cong, D. and Nguyen-Thoi, T. (2016), "Damage Detection in Laminated Composite Plates Using Modal Strain Energy and Improved Differential Evolution Algorithm", Procedia Eng., 142, 182-189. https://doi.org/10.1016/j.proeng.2016.02.030
  33. Xiang, J. and Liang, M. (2012a), "A two-step approach to multidamage detection for plate structures", Eng. Fract. Mech., 91, 73-86.
  34. Xiang, J. and Liang, M. (2012b), "Wavelet‐Based Detection of Beam Cracks Using Modal Shape and Frequency Measurements", Comput.-Aid. Civil Infrastruct. Eng., 27(6), 439-454. https://doi.org/10.1111/j.1467-8667.2012.00760.x
  35. Xiang, J., Matsumoto, T., Long, J., Wang, Y. and Jiang, Z. (2012), "A simple method to detect cracks in beam-like structures", Smart Struct. Syst., Int. J., 9(4), 335-353. https://doi.org/10.12989/sss.2012.9.4.335
  36. Xiang, J., Matsumoto, T., Wang, Y. and Jiang, Z. (2013), "Detect damages in conical shells using curvature mode shape and wavelet finite element method", Int. J. Mech. Sci., 66, 83-93. https://doi.org/10.1016/j.ijmecsci.2012.10.010
  37. Xiang, J., Nackenhorst, U., Wang, Y., Jiang, Y., Gao, H. and He, Y. (2014a), "A new method to detect cracks in plate-like structures with though-thickness cracks", Smart Struct. Syst., Int. J., 14(3), 397-418. https://doi.org/10.12989/sss.2014.14.3.397
  38. Xiang, J., Liang, M. and He, Y. (2014b), "Experimental investigation of frequency-based multi-damage detection for beams using support vector regression", Eng. Fract. Mech., 131, 257-268.
  39. Xing, B. and Gao, W.-J. (2014), Teaching-Learning-based Optimization Algorithm, Springer.
  40. Xu, Y., Qian, Y., Song, G. and Guo, K. (2015), "Damage detection using finite element model updating with an improved optimization algorithm", Steel Compos. Struct., Int. J., 19(1), 191-208. https://doi.org/10.12989/scs.2015.19.1.191
  41. Yang, X.-S., Karamanoglu, M. and He, X. (2014), "Flower pollination algorithm: a novel approach for multiobjective optimization", Eng. Optimiz., 46(9), 1222-1237. https://doi.org/10.1080/0305215X.2013.832237
  42. Yang, Z.-B., Radzienski, M., Kudela, P. and Ostachowicz, W. (2017), "Two-dimensional Chebyshev pseudo spectral modal curvature and its application in damage detection for composite plates", Compos. Struct., 168, 372-383. https://doi.org/10.1016/j.compstruct.2017.02.066
  43. Zhou, Y.-L., Maia, N.M. and Abdel Wahab, M. (2016), "Damage detection using transmissibility compressed by principal component analysis enhanced with distance measure", J. Vib. Control, 1077546316674544.
  44. Zhou, Y.-L., Maia, N.M., Sampaio, R.P. and Wahab, M.A. (2017), "Structural damage detection using transmissibility together with hierarchical clustering analysis and similarity measure", Struct. Health Monitor., 16(6), 711-731. https://doi.org/10.1177/1475921716680849
  45. Zou, Y., Tong, L. and Steven, G.P. (2000), "Vibration-based model-dependent damage (delamination) identification and health monitoring for composite structures-a review", J. Sound Vib., 230(2), 357-378. https://doi.org/10.1006/jsvi.1999.2624