• 제목/요약/키워드: damage condition

검색결과 2,020건 처리시간 0.032초

전기화학적 양극분극시험에 의한 고온 설비부재의 열화손상 평가 (Degradation Damage Evaluation of High Temperature Structural Components by Electrochemical Anodic Polarization Test)

  • 유호선;송문상;송기욱;류대영
    • 대한기계학회논문집A
    • /
    • 제24권6호
    • /
    • pp.1398-1407
    • /
    • 2000
  • The structural steels of power plant show the decrease of mechanical properties due to degradation such as temper embrittlement, creep damage and softening during long-term operation at high temper ature. The typical causes of material degradation damage are the creation and coarsening of carbides(M23C6, M6C) and the segregation of impurities(P, Sb and Sn) to grain boundary. It is also well known that material degradation induces the cleavage fracture and increases the ductile-brittle transition temperature of steels. So, it is very important to evaluate degradation damage to secure the reliable and efficient service condition and to prevent brittle failure in service. However, it would not be appropriate to sample a large test piece from in-service components. Therefore, it is necessary to develop a couple of new approaches to the non-destructive estimation technique which may be applicable to assessing the material degradation of the components with not to influence their essential strength. The purpose of this study is to propose and establish a new electrochemical technique for non-destructive evaluation of material degradation damage for Cr-Mo steels which is widely used in the high temperature structural components. And the electrochemical anodic polarization test results are compared with those of semi-nondestructive SP test.

원형 강관의 국부 부식손상 수준 및 손상형태에 따른 압축강도 성능평가 (Evaluation of Compressive Strengths of Tubular Steel Members According to Corrosion Damage and Shape)

  • 안진희;남동균;이원홍;허정원;김인태
    • 한국강구조학회 논문집
    • /
    • 제28권4호
    • /
    • pp.213-222
    • /
    • 2016
  • 극심한 대기부식 환경에 설치된 강구조물은 사용기간 증가에 따라 발생한 부식손상에 따라 구조성능의 변화나 감소가 발생할 수 있다. 본 연구는 부식손상 특징에 따른 강관부재의 압축강도 성능 변화를 평가하기 위하여 강관 시험체에 인위적인 부식손상을 도입한 후 압축강도 평가시험을 통하여 부식손상에 따른 압축강도 변화 및 거동변화를 평가하였다. 부식손상의 경우 단면에 대한 국부적인 부식손상의 형태 및 위치의 영향이 있는 것으로 평가되었으며, 국부부식 위치와 부식손상으로 인한 단면이 변화부 주위에서 국부 변형에 의한 파괴가 발생하는 것으로 분석되었다. 또한 본 연구결과를 통하여 부식의 분포 및 부식의 손상량에 따른 강관부재의 압축강도 변화관계를 부식손상량에 따라 평가할 수 있도록 제시하였다

WC-10Co4Cr으로 초고속 화염용사 코팅된 Cu 합금의 해수내 캐비테이션 손상 거동 (Behaviors of Cavitation Damage in Seawater for HVOF Spray Coated Layer with WC-10Co4Cr on Cu Alloy)

  • 한민수;김민성;장석기;김성종
    • 한국표면공학회지
    • /
    • 제45권6호
    • /
    • pp.264-271
    • /
    • 2012
  • Due to the good corrosion resistance and machinability, copper alloy is commonly employed for shipbuilding, hydroelectric power and tidal power industries. The Cu alloy, however, has poor durability, and the seawater application at fast flow condition becomes vulnerable to cavitation damage leading to economic loss and risking safety. The HVOF(High Velocity Oxygen Fuel) thermal spray coating with WC-10Co4Cr were therefore introduced as a replacement for chromium or ceramic to minimize the cavitation damage and secure durablility under high-velocity and high-pressure fluid flow. Cavitation test was conducted in seawater at $15^{\circ}C$ and $25^{\circ}C$ with an amplitude of $30{\mu}m$ on HVOF WC-10Co4Cr coatings produced by thermal spray. The cavitation at $15^{\circ}C$ and $25^{\circ}C$ exposed the substrate in 12.5 hours and in 10 hours, respectively. Starting from 5 hours of cavitation, the coating layer continued to show damage by higher than 160% over time when the temperature of seawater was elevated from $15^{\circ}C$ to $25^{\circ}C$. Under cavitation environment, although WC-10Co4Cr has good wear resistance and durability, increase in temperature may accelerate the damage rate of the coating layer mainly due to cavitation damage.

해양 환경 하에서 16.7Cr-10Ni-2Mo 스테인리스강의 표면 손상에 미치는 캐비테이션의 영향 (Effect of cavitation on surface damage of 16.7Cr-10Ni-2Mo stainless steel in marine environment)

  • 정상옥;한민수;김성종
    • Corrosion Science and Technology
    • /
    • 제14권5호
    • /
    • pp.239-246
    • /
    • 2015
  • Stainless steel is generally known to have characteristics of excellent corrosion resistance and durability, but in a marine environment it can suffer from localized corrosion due to the breakdown of passivity film due to chloride ion in seawater. Furthermore, the damage behaviors are sped up under a cavitation environment because of complex damage from electrochemical corrosion and cavitation-erosion. In this study the characteristics of electrochemical corrosion and cavitation erosion behavior were evaluated on 16.7Cr-10Ni-2Mo stainless steel under a cavitation environment in natural seawater. The electrochemical experiments have been conducted at both static conditions and dynamic conditions inducing cavitation with different current density parameters. The surface morphology and damage behaviors were compared after the experiment. After the cavitation test with time variables morphological examinations on damaged specimens were analyzed by using a scanning electron microscope and a 3D microscope. the galvanostatic experiment gave a cleaner surface morphology presented with less damage depth at high current density regions. It is due to the effect of water cavitation peening under the cavitation condition. In the cavitation experiment, with amplitude of $30{\mu}m$ and seawater temperature of $25^{\circ}C$, weight loss and cavitation-erosion damage depth were dramatically increased after 5 hours inducing cavitation.

Damage Mechanism of Drift Ice Impact

  • Gong, Li;Wang, Zhonghui;Li, Yaxian;Jin, Chunling;Wang, Jing
    • Journal of Information Processing Systems
    • /
    • 제15권6호
    • /
    • pp.1350-1364
    • /
    • 2019
  • The ice damage occurs frequently in cold and dry region of western China in winter ice period and spring thaw period. In the drift ice condition, it is easy to form different extrusion force or impact force to damage tunnel lining, causing project failure. The failure project could not arrive the original planning and construction goal, giving rise to the water allocation pressure which influences diversion irrigation and farming production in spring. This study conducts the theoretical study on contact-impact algorithm of drift ices crashing diversion tunnel based on the symmetric penalty function in finite element theory. ANSYS/LS-DYNA is adopted as the platform to establish tunnel model and drift ice model. LS-DYNA SOLVER is used as the solver and LS-PREPOST is used to do post-processing, analyzing the damage degrees of drift ices on tunnel. Constructing physical model in the experiment to verify and reveal the impact damage mechanism of drift ices on diversion tunnel. The software simulation results and the experiment results show that tunnel lining surface will form varying degree deformation and failure when drift ices crash tunnel lining on different velocity, different plan size and different thickness of drift ice. The researches also show that there are damages of drift ice impact force on tunnel lining in the thawing period in cold and dry region. By long time water scouring, the tunnel lining surfaces are broken and falling off which breaks the strength and stability of the structure.

항공판례의 연구 - 여객운송인의 책임을 중심으로 - (A Study on the Aviation Case Law - Focusing on the Air Carrier's Liability for Passenger -)

  • 김종복
    • 항공우주정책ㆍ법학회지
    • /
    • 제22권2호
    • /
    • pp.53-83
    • /
    • 2007
  • The purpose of this paper is to study precedent cases of the Air carrier liability for passengers. The article 17 of Warsaw Convention (also in Montreal Convention article 17-1) provides the Air carrier liability for passengers which is the most essential part of the Air carrier liability. According to these Conventions, 1) the carrier is liable for damage sustained in case of death or bodily injury of a passenger. Precedents and theories have disagreements on whether the damage covers the mental injury as well. 2) The carrier is liable for damage sustained from aviation accident. The definition of 'aviation accident' is becoming problematic. 3) The carrier is liable for damage sustained in case of death or bodily injury of a passenger upon condition only that the accident which caused the death or injury took place on board the aircraft or in the course of any of the operations of embarking or disembarking. The question at issue is the range of the operations of embarking or disembarking. This paper introduces the precedents (also, the model precedents) about the carriers liability for passengers and related cases, so as to help understand the trend of judicial decisions. Furthermore, the cases, once took all of the attention of the international air carriers, concerned with the 'Economy class syndrome' (DVT : Deep Vein Thrombosis) are also presented. Under the new Montreal Convention, the carriers liability for passengers will continue to be the main issue. Thus it is required that academics as well as practical businesses may keep up their studies about this issue.

  • PDF

참조응력을 이용한 316LN 스테인리스강의 크리프 해석 (Creep Analysis of Type 316LN Stainless Steel Using Reference Stress)

  • 김우곤;류우석
    • 대한기계학회논문집A
    • /
    • 제26권10호
    • /
    • pp.2122-2129
    • /
    • 2002
  • Creep damage using a reference stress(RS) was analyzed for type 316LN stainless steel. The generalized K-R equation was reconstructed into the RS equation using a critical stress value $\sigma$. The RS equation was derived from the critical stress in failure time $t_f$ instead of material damage parameter $\omega$, which indicates the critical condition of collapse or approach to gross instability of materials during creep. For obtaining the reference stress, a series of creep tests and tensile tests were conducted with at 55$0^{\circ}C$ and $600^{\circ}C$. The stress-time data obtained from creep tests were applied to the RS equations to characterize the creep damage of type 316LN stainless steel. The value of creep constant r with stress levels was about 18 at 55$0^{\circ}C$ and 21 at $600^{\circ}C$. This value was almost similar with r = 24 in the K-R equation, which was obtained by using damage parameter $\omega$. Relationship plots of creep failure strain and life fraction $(t_f /t_r)$ were also obtained with different λ values. The RS equation was therefore more convenient than the generalized K-R equation, because the measuring process to quantify the damage parameter $\omega$ such as voids or micro cracks in crept materials was omitted. The RS method can be easily used by designers and plant operator as a creep design tool.

Transmission of ultrasonic guided wave for damage detection in welded steel plate structures

  • Liu, Xinpei;Uy, Brian;Mukherjee, Abhijit
    • Steel and Composite Structures
    • /
    • 제33권3호
    • /
    • pp.445-461
    • /
    • 2019
  • The ultrasonic guided wave-based technique has become one of the most promising methods in non-destructive evaluation and structural health monitoring, because of its advantages of large area inspection, evaluating inaccessible areas on the structure and high sensitivity to small damage. To further advance the development of damage detection technologies using ultrasonic guided waves for the inspection of welded components in structures, the transmission characteristics of the ultrasonic guided waves propagating through welded joints with various types of defects or damage in steel plates are studied and presented in this paper. A three-dimensional (3D) finite element (FE) model considering the different material properties of the mild steel, high strength steel and austenitic stainless steel plates and their corresponding welded joints as well as the interaction condition of the steel plate and welded joint, is developed. The FE model is validated against analytical solutions and experimental results reported in the literature and is demonstrated to be capable of providing a reliable prediction on the features of ultrasonic guided wave propagating through steel plates with welded joints and interacting with defects. Mode conversion and scattering analysis of guided waves transmitted through the different types of weld defects in steel plates are performed by using the validated FE model. Parametric studies are undertaken to elucidate the effects of several basic parameters for various types of weld defects on the transmission performance of guided waves. The findings of this research can provide a better understanding of the transmission behaviour of ultrasonic guided waves propagating through welded joints with defects. The method could be used for improving the performance of guided wave damage detection methods.

Damage detection in structures using modal curvatures gapped smoothing method and deep learning

  • Nguyen, Duong Huong;Bui-Tien, T.;Roeck, Guido De;Wahab, Magd Abdel
    • Structural Engineering and Mechanics
    • /
    • 제77권1호
    • /
    • pp.47-56
    • /
    • 2021
  • This paper deals with damage detection using a Gapped Smoothing Method (GSM) combined with deep learning. Convolutional Neural Network (CNN) is a model of deep learning. CNN has an input layer, an output layer, and a number of hidden layers that consist of convolutional layers. The input layer is a tensor with shape (number of images) × (image width) × (image height) × (image depth). An activation function is applied each time to this tensor passing through a hidden layer and the last layer is the fully connected layer. After the fully connected layer, the output layer, which is the final layer, is predicted by CNN. In this paper, a complete machine learning system is introduced. The training data was taken from a Finite Element (FE) model. The input images are the contour plots of curvature gapped smooth damage index. A free-free beam is used as a case study. In the first step, the FE model of the beam was used to generate data. The collected data were then divided into two parts, i.e. 70% for training and 30% for validation. In the second step, the proposed CNN was trained using training data and then validated using available data. Furthermore, a vibration experiment on steel damaged beam in free-free support condition was carried out in the laboratory to test the method. A total number of 15 accelerometers were set up to measure the mode shapes and calculate the curvature gapped smooth of the damaged beam. Two scenarios were introduced with different severities of the damage. The results showed that the trained CNN was successful in detecting the location as well as the severity of the damage in the experimental damaged beam.

콘크리트 교량 상태평가를 위한 딥러닝 기반 손상 탐지 프로토타입 개발 (Development of Deep Learning-Based Damage Detection Prototype for Concrete Bridge Condition Evaluation)

  • 남우석;정현준;박경한;김철민;김규선
    • 대한토목학회논문집
    • /
    • 제42권1호
    • /
    • pp.107-116
    • /
    • 2022
  • 최근 안전점검자가 접근성 문제로 점검이 어려운 교량 부재의 상태평가를 위해 영상분석 기반의 시설물 점검 기법연구가 활발히 진행 중이다. 본 논문은 교량을 대상으로 딥러닝 기반 영상정보에 대해서 상태평가 연구를 진행하였고 이에 대한 평가 프로그램(프로토타입)을 개발하였다. 딥러닝 기반 교량 손상탐지 프로토타입을 개발하기 위해 딥러닝 모델 중 손상 검출 및 정량화가 가능한 의미론적 분할 모델인 Mask-RCNN를 적용하였고 학습데이터 6,540장(오픈 데이터 포함)과 손상유형에 적합한 레이블링을 구성하였다. 모델링에 대한 성능검증한 결과, 콘크리트 균열, 박리/박락, 철근노출과 도장 박리에 대한 정밀도(precision)는 95.2 %, 재현율(recall)은 93.8 % 나타내었다. 또한, 교량 콘크리트 부재 손상율을 이용하여 콘크리트 균열 실 데이터를 2차 성능검증 하였다.