• Title/Summary/Keyword: damage/damage identification

Search Result 724, Processing Time 0.039 seconds

Identification of novel genes for improvement of downy mildew resistance in Zea mays (옥수수의 노균병 저항성 증대를 위한 저항성 유용유전자 발굴)

  • Min, Kyeong Do;Kim, Hyo Chul;Kim, Kyung-Hee;Moon, Jun-Cheol;Lee, Byung-Moo;Kim, Jae Yoon
    • Korean Journal of Environmental Biology
    • /
    • v.37 no.4
    • /
    • pp.493-502
    • /
    • 2019
  • Maize (Zea mays L.) is a C4-plant and one of the three major crops grown worldwide. Because of its high productivity, maize is considered as one of the most important food and feed stocks in the world. Recently, bioethanol from maize was predominantly generated in the USA and Brazil. Infection of maize by several diseases resulted in a huge disaster and prevented maize production. Downy mildew, caused by Peronosclerospora sorghi, is one of the most serious diseases of maize. Despite efforts to develop downy mildew-resistant cultivars or seed treatment with metalaxyl, downy mildew persists as a serious pathogen and is still prevalent in specific geographical locations. Analysis of soils infected with downy mildew and investigation of candidates associated with downy mildew resistance is an attractive method to overcome downy mildew damage in maize. In a previous study, we reported that maize chromosome 6 carries a possible candidate gene for downy mildew resistance. Using bioinformatics tools and RT-PCR analysis, five novel genes including bZIP, OFP transcription factor, and Ppr were identified as candidate genes associated with downy mildew resistance.

Thrombotic thrombocytopenic purpura with decreased level of ADAMTS-13 activity and increased level of ADAMTS-13 inhibitor in an adolescent (청소년기에 발생한 ADAMTS-13 활성도 저하와 항체 양성을 보인 혈전저혈소판혈증자색반병 1례)

  • Yang, Eun Mi;Han, Dong Kyun;Baek, Hee Jo;Shin, Myung Geun;Kim, Young Ok;Kook, Hoon;Hwang, Tae Ju
    • Clinical and Experimental Pediatrics
    • /
    • v.53 no.3
    • /
    • pp.428-431
    • /
    • 2010
  • Thrombotic thrombocytopenic purpura (TTP) is a thrombotic microangiopathy characterized by endothelial cell damage, resulting in microangiopathic hemolytic anemia, thrombocytopenia, and various degrees of neurological and renal impairment caused by microvascular thrombi. It is rare in children and frequently follows a fatal course. TTP is divided into 2 types: one is inherited and associated with ADAMTS-13 gene mutations and the other is acquired and associated with anti-ADAMTS-13 autoantibodies. The measurement of ADAMTS-13 activity in plasma, identification of ADAMTS-13 circulating inhibitor, anti-ADAMTS-13 IgG, and ADAMTS-13 gene sequencing are crucial to the diagnosis of TTP. Plasma exchanges are the first-line treatment for acquired TTP, combined with steroids and immunosuppressive drugs. Here, we describe the case of an adolescent patient with TTP, confirmed by decreased level of ADAMTS-13 activity and an increased level of ADAMTS-13 inhibitor, who was successfully treated by plasma exchanges.

Molecular Identification of the Dominant Species of Dark-winged Fungus Gnat (Diptera: Sciaridae) from Button Mushroom (Agaricus bisporus) in Korea (국내 양송이버섯 재배 중 발생하는 버섯파리류 분자생물학적 종 동정)

  • Yoon, Jung-Beom;Kim, Hyeong-Hwan;Jung, Chung-Ryul;Kang, Min-Gu;Kwon, Sun-Jung;Kim, Dong-Hwan;Yang, Chang-Yeol;Seo, Mi-Hye
    • Korean journal of applied entomology
    • /
    • v.55 no.4
    • /
    • pp.471-475
    • /
    • 2016
  • The dark-winged fungus gnats are one of the most serious fly pests attacking the mushroom cultivation in Korea. They cause severe damage to the artificial sawdust beds used to cultivate mushroom, and reduce the production of button mushroom, Agaricus bisporus, in greenhouses. In this study, we collected nine species of the mushroom flies in order to identify the dominant species of the dark-winged fungus gnat attacking the A. bisporus plantation using the yellow sticky trap in Buyeo-gun, Boryeong-gun, Yongin-si and Chilgok-gun from April to June 2015. The collected samples were used to determine the DNA sequence of the cytochrome c oxidase subunit I (COI) of the nine different species by DNA barcoding. The sequencing results showed that Lycoriella ingenua was the dominant dark-winged fungus gnat species destroying A. bisporus cultivated on the artificial sawdust beds in Korea.

Saprolegnia parasitica Isolated from Rainbow Trout in Korea: Characterization, Anti-Saprolegnia Activity and Host Pathogen Interaction in Zebrafish Disease Model

  • Shin, Sangyeop;Kulatunga, D.C.M.;Dananjaya, S.H.S.;Nikapitiya, Chamilani;Lee, Jehee;De Zoysa, Mahanama
    • Mycobiology
    • /
    • v.45 no.4
    • /
    • pp.297-311
    • /
    • 2017
  • Saprolegniasis is one of the most devastating oomycete diseases in freshwater fish which is caused by species in the genus Saprolegnia including Saprolegnia parasitica. In this study, we isolated the strain of S. parasitica from diseased rainbow trout in Korea. Morphological and molecular based identification confirmed that isolated oomycete belongs to the member of S. parasitica, supported by its typical features including cotton-like mycelium, zoospores and phylogenetic analysis with internal transcribed spacer region. Pathogenicity of isolated S. parasitica was developed in embryo, juvenile, and adult zebrafish as a disease model. Host-pathogen interaction in adult zebrafish was investigated at transcriptional level. Upon infection with S. parasitica, pathogen/antigen recognition and signaling (TLR2, TLR4b, TLR5b, NOD1, and major histocompatibility complex class I), pro/anti-inflammatory cytokines (interleukin $[IL]-1{\beta}$, tumor necrosis factor ${\alpha}$, IL-6, IL-8, interferon ${\gamma}$, IL-12, and IL-10), matrix metalloproteinase (MMP9 and MMP13), cell surface molecules ($CD8^+$ and $CD4^+$) and antioxidant enzymes (superoxide dismutase, catalase) related genes were differentially modulated at 3- and 12-hr post infection. As an anti-Saprolegnia agent, plant based lawsone was applied to investigate on the susceptibility of S. parasitica showing the minimum inhibitory concentration and percentage inhibition of radial growth as $200{\mu}g/mL$ and 31.8%, respectively. Moreover, natural lawsone changed the membrane permeability of S. parasitica mycelium and caused irreversible damage and disintegration to the cellular membranes of S. parasitica. Transcriptional responses of the genes of S. parasitica mycelium exposed to lawsone were altered, indicating that lawsone could be a potential anti-S. parasitica agent for controlling S. parasitica infection.

Analysis of diversity of hemolytic microbiome from aquafarm of arkshell, Scapharca broughtonii (피조개 양식장 내 용혈성 미생물의 다양성 분석)

  • Gwon, Byeong-Geun;Kim, Young-Ok;Nam, Bo-Hye;Kim, Woo-Jin;Kong, Hee Jeong;Kim, Bong-Seok;Jee, Young-Ju;Lee, Sang-Jun;An, Cheul Min;Kim, Dong-Gyun
    • Journal of fish pathology
    • /
    • v.26 no.3
    • /
    • pp.193-206
    • /
    • 2013
  • The ark shell, Scapharca broughtonii is a marine bivalve mollusks belonging to the family Arcidae and important seafood for Korean and Japanese, and southern coast is brisk bays for the ark shell aquaculture. However, productivity of ark shell from these regions were rapidly reduced during the last decade due to mass mortality. The reason of this great damage has not yet been identified. To overcome this economic loss, diverse investigations were focused on environmental factors that affects in the physiology of S. broughtonii, but microbiological researches were performed insufficiently. Hemoglobin is one of the major blood component of ark shell and is damaged by some species of bacterial toxins. We concentrated on this red pigment because hemolysis could be the cause of ark shell mortality. In this study, we analyzed microbial diversity of underwater sediments in coastal regions and also existences in the body of S. broughtonii. We investigate about 4,200 isolates collected from June to September for microbial diversity of sediments and ark shell. We screened all of culturable microorganisms, and identified 25 genera 118 species, 24 genera 89 species, 30 genera 109 species and 39 genera 141 species, and selected 140 unique colonies for identification and challenge assay.

Identification of a Major QTL, qSTV11SG, Associated with Resistance to Rice Stripe Virus Disease Originated from Shingwangbyeo in Rice (Oryza Sativa L.) (신광벼 유래의 벼 줄무늬잎마름병 저항성 주동 QTL qSTV11SG탐색)

  • Kwak, Do-Yeon;Lee, Bong-Chun;Choi, Ilyoung;Yeo, Un-Sang;Cho, Jun-Hyun;Lee, Ji-Yoon;Song, You-Chun;Yun, Yeong-Nam;Park, Dong-Soo;Kang, Hang-Won;Nam, Min-Hee;Lee, Jong-Hee
    • Korean Journal of Breeding Science
    • /
    • v.43 no.5
    • /
    • pp.464-469
    • /
    • 2011
  • Virus diseases often cause serious damage to rice production in Asia. The lack of information on virus resistance genes has been a major obstacle for the breeding of resistant varieties. In order to identify DNA marker associated with resistance against rice stripe virus (RSV), the quantitative trait locus (QTL) was carried out using advanced backcross population developed from a cross between RSV-resistant tongil type cultivar Shinkwang and susceptible japonica cultivar Ilpum. A RSV resistance QTL $qSTV11^{SG}$ explaining 44.2% of the phenotypic variation was identified on chromosome 11 of Tongil type rice cultivar 'Shingwang'. $qSTV11^{SG}$ was tightly linked to DNA marker RM6897. The RM6897 divided as resistance type allele and susceptible type alleles. Twenty seven resistant varieties showed the resistant-type allele and 23 susceptible varieties were susceptible-type allele to the marker of RM6897. This results and the molecular markers presented here may be useful in rice breeding for improving RSV resistance in japonica rice.

A Study on the Identification of Hazardous Factors and Prevention of Accident in Old Boilers (노후보일러 유해인자 발굴 및 사고예방에 관한 연구)

  • Sa, Min-Hyung;Woo, In-Sung
    • Journal of the Korean Institute of Gas
    • /
    • v.23 no.4
    • /
    • pp.1-9
    • /
    • 2019
  • Large-scale industrial boilers operating at high temperature and high pressure, have a large amount of water, and a large amount of energy is released at the time of explosion. Currently, most industrial boilers use gas fuel such as LNG and LPG, etc. and fuel exists in the same space as equipment, so there is a high possibility of secondary damage such as fire or explosion in the event of a boiler accident. Both special care and management are required to operate the very dangerous equipment that causes casualty 2.51 per accident. For boilers of a certain size or more, the Korea Energy Agency conducts inspections in accordance with the Energy Usage Rationalization Act, KS, and public notice of the Ministry of Industry, Trade and Resources. In this research, based on the results of the inspection, the hazard factorss are configured, and a questionnaire is conducted to the inspector, the equipment manager, the maintenance person, and the person in charge of the manufacturer. We analyzed the results by using AHP (Analytic Hierarchy Process). As a result of analysis, generally recognized hazard factorss are not good management, measurement failure, specification failure, water leak, leak analysis, but connection, welding, scale, and corrosion, etc. are relatively less important. It is judged that the adverse factors that are recognized to be highly important among all groups and careers are already well managed, but less important and adverse factors should be well managed to ensure that the safe usage of the boiler.

A Classification Model for Illegal Debt Collection Using Rule and Machine Learning Based Methods

  • Kim, Tae-Ho;Lim, Jong-In
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.4
    • /
    • pp.93-103
    • /
    • 2021
  • Despite the efforts of financial authorities in conducting the direct management and supervision of collection agents and bond-collecting guideline, the illegal and unfair collection of debts still exist. To effectively prevent such illegal and unfair debt collection activities, we need a method for strengthening the monitoring of illegal collection activities even with little manpower using technologies such as unstructured data machine learning. In this study, we propose a classification model for illegal debt collection that combine machine learning such as Support Vector Machine (SVM) with a rule-based technique that obtains the collection transcript of loan companies and converts them into text data to identify illegal activities. Moreover, the study also compares how accurate identification was made in accordance with the machine learning algorithm. The study shows that a case of using the combination of the rule-based illegal rules and machine learning for classification has higher accuracy than the classification model of the previous study that applied only machine learning. This study is the first attempt to classify illegalities by combining rule-based illegal detection rules with machine learning. If further research will be conducted to improve the model's completeness, it will greatly contribute in preventing consumer damage from illegal debt collection activities.

Identification, Enzymatic Activity, and Decay Ability of Basidiomycetous Fungi Isolated from the Decayed Bark of Mongolian Oak (Quercus mongolica Fisch. ex Ledeb.)

  • Nguyen, Manh Ha;Kim, Dae Ho;Park, Ji Hyun;Park, Young Ui;Lee, Moo Yeul;Choi, Myeong Hee;Lee, Dong Ho;Lee, Jong Kyu
    • Journal of Forest and Environmental Science
    • /
    • v.37 no.1
    • /
    • pp.52-61
    • /
    • 2021
  • Decay fungi can decompose plant debris to recycle carbon in the ecosystem. Still, they can also be fungal pathogens, which can damage living trees and/or wood material and cause a large amount of timber loss. We isolated and identified basidiomycetous fungi from the decayed bark of Mongolian oak wrapped with sticky roll traps. The degrading enzyme activities were then tested for all fungal isolates. The decay ability of selected isolates was assessed based on the weight loss of wood discs after inoculating with culture suspension of decay fungi under the different humidity levels. A total of 46 basidiomycetous fungal isolates belonged to 12 species, and 10 genera were obtained from Jong Myo (16 isolates), Chang Kyung palace (7 isolates), Cheong Gye (10 isolates), and Gun Po (13 isolates). Gymnopus luxurians was the most dominant fungus in the present study, and this species distributed in all survey sites with 9 isolates in Jong Myo, followed by 3 isolates in Chang Kyung palace, while Cheong Gye and Gun Po had only 1 isolate each. Among 46 isolates, 44 isolates secreted at least one enzyme, while 25 isolates produced both cellulase and phenol oxidase enzymes, and 2 isolates produced neither. The assessment of decay ability by artificial inoculation indicated that the weight loss of wood discs was significantly influenced by humidity conditions when inoculated with bark decay fungi. The percent weight losses by G. luxurians inoculation in RH of 90-100% and RH of 65-75% were 4.61% and 2.45%, respectively. The weight loss caused by Abortiporus biennis were 6.67% and 0.46% in RH of 90-100% and RH of 45-55%, respectively. The humidity reduction approach should be applied for further studies to control the growth and spread of bark decay fungi on the trunks wrapped with sticky roll traps.

A Case Study on Electronic Recognition Sensor for Underground Facility Management System (지중 매설물 이력 관리 시스템 개발을 위한 전자인식기의 현장 적용성 검증 연구)

  • Jung, YooSeok;Kim, Soullam;Kim, Byungkon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.1
    • /
    • pp.777-785
    • /
    • 2021
  • Many utility lines are buried underground to provide various functions of the city. Because historical records are not managed systematically, damage has occurred during excavation. In addition, the demand for an underground facility management system is increasing as the aerial underground project is progressing. By attaching an electronic recognition sensor to an underground facility, such as pipelines, the management history and site conditions can be carefully managed. Therefore, in this study, electronic recognition sensors, such as BLE Beacon, UHF RFID, geomagnetic sensor, and commercial marker, were tested to analyze the strengths, weaknesses, and field applicability through a pilot project. According to the limited research results collected through two pilot projects, the installation depth is most important to demonstrate the performance of the electronic reader. In addition, because it should be used in urban areas, the influence of environmental interference should be minimized, and there should be no performance degradation over time. In the case of the geomagnetic recognizer, the effect of environmental interference was large, and performance degradation occurred over time using the BLE Beacon. In the field situation, where the installation depth can be controlled to less than 40cm, the utility of the battery-free UHF RFID was the best.