DOI QR코드

DOI QR Code

Identification of novel genes for improvement of downy mildew resistance in Zea mays

옥수수의 노균병 저항성 증대를 위한 저항성 유용유전자 발굴

  • Min, Kyeong Do (Department of Plant Resources, College of Industrial Science, Kongju National University) ;
  • Kim, Hyo Chul (Department of Life Science, Dongguk University-Seoul) ;
  • Kim, Kyung-Hee (Department of Life Science, Dongguk University-Seoul) ;
  • Moon, Jun-Cheol (Agriculture and Life Sciences Research Institute, Kangwon National University) ;
  • Lee, Byung-Moo (Department of Life Science, Dongguk University-Seoul) ;
  • Kim, Jae Yoon (Department of Plant Resources, College of Industrial Science, Kongju National University)
  • 민경도 (공주대학교 식물자원학과) ;
  • 김효철 (동국대학교 생명과학과) ;
  • 김경희 (동국대학교 생명과학과) ;
  • 문준철 (강원대학교 농업생명과학연구원) ;
  • 이병무 (동국대학교 생명과학과) ;
  • 김재윤 (공주대학교 식물자원학과)
  • Received : 2019.10.15
  • Accepted : 2019.10.21
  • Published : 2019.12.31

Abstract

Maize (Zea mays L.) is a C4-plant and one of the three major crops grown worldwide. Because of its high productivity, maize is considered as one of the most important food and feed stocks in the world. Recently, bioethanol from maize was predominantly generated in the USA and Brazil. Infection of maize by several diseases resulted in a huge disaster and prevented maize production. Downy mildew, caused by Peronosclerospora sorghi, is one of the most serious diseases of maize. Despite efforts to develop downy mildew-resistant cultivars or seed treatment with metalaxyl, downy mildew persists as a serious pathogen and is still prevalent in specific geographical locations. Analysis of soils infected with downy mildew and investigation of candidates associated with downy mildew resistance is an attractive method to overcome downy mildew damage in maize. In a previous study, we reported that maize chromosome 6 carries a possible candidate gene for downy mildew resistance. Using bioinformatics tools and RT-PCR analysis, five novel genes including bZIP, OFP transcription factor, and Ppr were identified as candidate genes associated with downy mildew resistance.

본 연구는 옥수수 재배 시 환경에 영향을 미치는 노균병 저항성과 관련된 유전자 후보군을 탐색해서 노균병으로 인한 토양오염과 옥수수 생산량 감소를 해결하기 위하여 노균병 저항성 품종을 효율적으로 발굴하기 위한 연구이다. 옥수수의 6번 염색체의 152,892,333과 154,335,437 사이에 있는 노균병 저항성 유전자를 탐색하였으며 이 부분에 존재할 것으로 예상되는 전사체에서 38개의 프라이머 세트를 디자인하여 이 중 16개의 예측 전사체를 가려 내었다. 또한 RT-PCR을 수행하여 감염된 Ki11의 발현이 높은 7개의 전사체로 5개의 품종에 대하여 건강한 샘플과 감염된 샘플을 검정하였고 최종 5개의 후보 유전자군[알려지지 않은 미확인 유전자 2개, OFP transcription factor, bZIP transcription factor, pentatricopeptide repeat (Ppr)]이 발견되었다. 본 연구의 결과로 추가적인 실험 설계를 통해 5개의 후보 유전자군에 대한 재검정을 통하여 확실한 노균병 저항성 유전자를 발굴하고 이를 노균병 저항성 품종 개발 및 방재에 이용할 수 있을 것으로 사료된다.

Keywords

References

  1. Alves MS, SP Dadalto, AB Goncalves, GBD Souza, VA Barros and LG Fietto. 2013. Plant bZIP transcription factors responsive to pathogens: A review. 2013. Int. J. Mol. Sci. 14:7815-7828. https://doi.org/10.3390/ijms14047815
  2. Broyles JW. 1956. Observations on time and location of penetration in relation to amount of damage and chemical control of Physoderma maydis. Phytopathology 46:8.
  3. Jeffers D, H Cordova, S Vasal, G Srinivasan, D Beck and M Barandiaran. 2000. Status in breeding for resistance to maize diseases at Centro Internacional de Mejoramiento de Maiz y Trigo. pp. 257-266. In Proceedings of 7th Asian Regional Maize Workshop (Vassal et al. eds.). PCARRD, Los Banos, Philippines.
  4. Kim CH, YH Lee, KH Kim, SH Shin, KS Song, JC Moon, BM Lee and JY Kim. 2016. The study of genetic diversity for drought tolerance in maize. Korean J. Environ. Biol. 34:223-232. https://doi.org/10.11626/KJEB.2016.34.4.223
  5. Kim EO, MH Yu, KT Lee, KS Yun and SW Choi. 2009. Effect of thermal pretreatment on the functional constituents of waxy corn (Zea mays L.). Food Sci. Biotechnol. 18:1336-1341.
  6. Kim JY, JC Moon, HC Kim, SH Shin, KT Song, KH Kim and BM Lee. 2017. Identification of downy mildew resistance gene candidates by positional cloning in maize (Zea mays subsp. mays; Poaceae). Appl. Plant Sci. 5:1600132. https://doi.org/10.3732/apps.1600132
  7. Kim KH, JC Moon, JY Kim, HC Kim, SH Shin, KT Song, SB Baek and BM Lee. 2016. Evaluation of maize downy mildew using spreader row technique. Korean J. Crop Sci. Biotechnol. 61:41-49. https://doi.org/10.7740/kjcs.2016.61.1.041
  8. Kim SD and BE Dale. 2004. Global potential bioethanol production from wasted crops and crop residues. Biomass and Bioenerg. 26:361-375. https://doi.org/10.1016/j.biombioe.2003.08.002
  9. Kim SL, HG Moon and YH Ryu. Current status prospect of quality evaluation in Maize. 2002. Korean J. Crop Sci. Biotechnol. 47:107-123.
  10. Lin JJ, CP Yu, YM Chang, SCC Chen and WH Li. 2014. Maize and millet trascription factors annotated using comparative genomic and transcriptomic data. BMC Genomics 15:818. https://doi.org/10.1186/1471-2164-15-818
  11. Livak KJ and TD Schmittgen. 2001. Analysis of relative gene expression data using real -time quantitative PCR the $2^{-{\Delta}{\Delta}Ct}$ Method. Methods 25:402-408. https://doi.org/10.1006/meth.2001.1262
  12. Manoli A, A Sturaro, S Trevisan, S Quaggiotti and A Nonis. 2012. Evaluation of candidate reference genes for qPCR in maize. J. Plant Physiol. 169:807-815. https://doi.org/10.1016/j.jplph.2012.01.019
  13. Pingali PL. 2001. 1999/2000 World Maize Facts and Trends. Meeting World Maize Needs: Technological Opportunities and Priorities for the Public Sector. CIMMYT, Mexico.
  14. Rao BM, HS Prakash, HS Shetty and KM Safeeulla. 1985. Downy mildew inoculum in maize seeds: techniques to detect seedborne inoculum of Peronosclerospora sorghi in maize. Seed Sci. Technol. 13:593-600.
  15. Rashid Z, PH Zaidi, MT Vinayan, SS Sharma and TAS Setty. 2013. Downy mildew resistance in maize (Zea mays L.) across Peronosclerospora species in lowland tropical Asia. Crop Prot. 43:183-191. https://doi.org/10.1016/j.cropro.2012.08.007
  16. SeKhwal MK, P Li, I Lam, X Wang, S Cloutier and FM You. 2015. Disease resistance gene analogs (RGAs) in plants. Int. J. Mol. Sci. 16:19248-19290. https://doi.org/10.3390/ijms160819248
  17. Sireesha Y and R Velazhahan. 2016. Biological control of downy mildew of maize caused by Peronosclerospora sorghi under environmentally controlled conditions. J. Appl. Nat. Sci. 8:279-283. https://doi.org/10.31018/jans.v8i1.786
  18. Song EM, HY Kim, SH Lee, SH Woo, HS Kim, KS Kyung, JS Lee and HS Jeong. 2011. Chemical components and quality characteristics of waxy corns cultured by conventional and environmentally-friendly methods. J. Korean Soc. Food Sci. Nutr. 40:962-968. https://doi.org/10.3746/JKFN.2011.40.7.962
  19. Varshney RK, JM Ribaut, ES Buckler, R Tuberosa, A Rafalski and P Langridgem. 2012. Can genomics boost productivity of orphan crops. Nat. Biotechnol. 30:1172-1176. https://doi.org/10.1038/nbt.2440
  20. Venuti S, D Copetti, S Foria, l Falginella, S Hoffmann, D Bellin, P Cindric, P Kozma, S Scalabrin, M Morgante, R Testolin and GD Gaspero. 2013. Historical introgression of the downy mildew resistance gene Rpv12 from the Asian species Vitis amurensis into grapevine varieties. PLoS One 8:e61228. https://doi.org/10.1371/journal.pone.0061228
  21. Yu H, W jiang, Q Liu, H Zhang, M Piao, Z Chen and M Bian. 2015. Expression pattern and subcellular localization of the ovate protein family in rice. PLoS One 10:e0118966. https://doi.org/10.1371/journal.pone.0118966