• Title/Summary/Keyword: damage/damage identification

Search Result 724, Processing Time 0.022 seconds

Modified gradient methods hybridized with Tikhonov regularization for damage identification of spatial structure

  • Naseralavi, S.S.;Shojaee, S.;Ahmadi, M.
    • Smart Structures and Systems
    • /
    • v.18 no.5
    • /
    • pp.839-864
    • /
    • 2016
  • This paper presents an efficient method for updating the structural finite element model. Model updating is performed through minimizing the difference between the recorded acceleration of a real damaged structure and a hypothetical damaged one. This is performed by updating physical parameters (module of elasticity in this study) in each step using iterative process of modified nonlinear conjugate gradient (M-NCG) and modified Broyden-Fletcher-Goldfarb-Shanno algorithm (M-BFGS) separately. These algorithms are based on sensitivity analysis and provide a solution for nonlinear damage detection problem. Three illustrative test examples are considered to assess the performance of the proposed method. Finally, it is demonstrated that the proposed method is satisfactory for detecting the location and ratio of structural damage in presence of noise.

Acoustic emission technique to identify stress corrosion cracking damage

  • Soltangharaei, V.;Hill, J.W.;Ai, Li;Anay, R.;Greer, B.;Bayat, Mahmoud;Ziehl, P.
    • Structural Engineering and Mechanics
    • /
    • v.75 no.6
    • /
    • pp.723-736
    • /
    • 2020
  • In this paper, acoustic emission (AE) and pattern recognition are utilized to identify the AE signal signatures caused by propagation of stress corrosion cracking (SCC) in a 304 stainless steel plate. The surface of the plate is under almost uniform tensile stress at a notch. A corrosive environment is provided by exposing the notch to a solution of 1% Potassium Tetrathionate by weight. The Global b-value indicated an occurrence of the first visible crack and damage stages during the SCC. Furthermore, a method based on linear regression has been developed for damage identification using AE data.

Seismic Damage Assessment on Structures using Measured Acceleration (측정가속도를 이용한 구조물의 지진손상평가)

  • 오성호;신수봉
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.216-223
    • /
    • 2003
  • A time-domain system identification (SI) method is developed for seismic damage assessment on structures. SI algorithms for complete measurements with respect to degrees-of-freedom are proposed. To take account of nonlinear dynamic response, an equation error in the incremental dynamic governing equation is defined for complete measurement between measured and computed acceleration. Variations of stiffness and damping parameters during earthquake vibration are chased by utilizing a constrained nonlinear optimization tool available in MATLAB. A simulation study has been carried out to identify damage event and to assess damage severity by using measured acceleration time history. Mass properties are assumed as known a priori. The effects of measurement noise on the identification are also investigated.

  • PDF

Statistics based localized damage detection using vibration response

  • Dorvash, Siavash;Pakzad, Shamim N.;LaCrosse, Elizabeth L.
    • Smart Structures and Systems
    • /
    • v.14 no.2
    • /
    • pp.85-104
    • /
    • 2014
  • Damage detection is a challenging, complex, and at the same time very important research topic in civil engineering. Identifying the location and severity of damage in a structure, as well as the global effects of local damage on the performance of the structure are fundamental elements of damage detection algorithms. Local damage detection is essential for structural health monitoring since local damages can propagate and become detrimental to the functionality of the entire structure. Existing studies present several methods which utilize sensor data, and track global changes in the structure. The challenging issue for these methods is to be sensitive enough in identifYing local damage. Autoregressive models with exogenous terms (ARX) are a popular class of modeling approaches which are the basis for a large group of local damage detection algorithms. This study presents an algorithm, called Influence-based Damage Detection Algorithm (IDDA), which is developed for identification of local damage based on regression of the vibration responses. The formulation of the algorithm and the post-processing statistical framework is presented and its performance is validated through implementation on an experimental beam-column connection which is instrumented by dense-clustered wired and wireless sensor networks. While implementing the algorithm, two different sensor networks with different sensing qualities are utilized and the results are compared. Based on the comparison of the results, the effect of sensor noise on the performance of the proposed algorithm is observed and discussed in this paper.

Vibration based damage detection in a scaled reinforced concrete building by FE model updating

  • Turker, Temel;Bayraktar, Alemdar
    • Computers and Concrete
    • /
    • v.14 no.1
    • /
    • pp.73-90
    • /
    • 2014
  • The traditional destructive tests in damage detection require high cost, long consuming time, repairing of damaged members, etc. In addition to these, powerful equipments with advanced technology have motivated development of global vibration based damage detection methods. These methods base on observation of the changes in the structural dynamic properties and updating finite element models. The existence, location, severity and effect on the structural behavior of the damages can be identified by using these methods. The main idea in these methods is to minimize the differences between analytical and experimental natural frequencies. In this study, an application of damage detection using model updating method was presented on a one storey reinforced concrete (RC) building model. The model was designed to be 1/2 scale of a real building. The measurements on the model were performed by using ten uni-axial seismic accelerometers which were placed to the floor level. The presented damage identification procedure mainly consists of five steps: initial finite element modeling, testing of the undamaged model, finite element model calibration, testing of the damaged model, and damage detection with model updating. The elasticity modulus was selected as variable parameter for model calibration, while the inertia moment of section was selected for model updating. The first three modes were taken into consideration. The possible damaged members were estimated by considering the change ratio in the inertia moment. It was concluded that the finite element model calibration was required for structures to later evaluations such as damage, fatigue, etc. The presented model updating based procedure was very effective and useful for RC structures in the damage identification.

Developing a smart structure using integrated DDA/ISMP and semi-active variable stiffness device

  • Karami, Kaveh;Nagarajaiah, Satish;Amini, Fereidoun
    • Smart Structures and Systems
    • /
    • v.18 no.5
    • /
    • pp.955-982
    • /
    • 2016
  • Recent studies integrating vibration control and structural health monitoring (SHM) use control devices and control algorithms to enable system identification and damage detection. In this study real-time SHM is used to enhance structural vibration control and reduce damage. A newly proposed control algorithm, including integrated real-time SHM and semi-active control strategy, is presented to mitigate both damage and seismic response of the main structure under strong seismic ground motion. The semi-active independently variable stiffness (SAIVS) device is used as semi-active control device in this investigation. The proper stiffness of SAIVS device is obtained using a new developed semi-active control algorithm based on real-time damage tracking of structure by damage detection algorithm based on identified system Markov parameters (DDA/ISMP) method. A three bay five story steel braced frame structure, which is equipped with one SAIVS device at each story, is employed to illustrate the efficiency of the proposed algorithm. The obtained results show that the proposed control algorithm could significantly decrease damage in most parts of the structure. Also, the dynamic response of the structure is effectively reduced by using the proposed control algorithm during four strong earthquakes. In comparison to passive on and off cases, the results demonstrate that the performance of the proposed control algorithm in decreasing both damage and dynamic responses of structure is significantly enhanced than the passive cases. Furthermore, from the energy consumption point of view the maximum and the cumulative control force in the proposed control algorithm is less than the passive-on case, considerably.

Damage localization and quantification of a truss bridge using PCA and convolutional neural network

  • Jiajia, Hao;Xinqun, Zhu;Yang, Yu;Chunwei, Zhang;Jianchun, Li
    • Smart Structures and Systems
    • /
    • v.30 no.6
    • /
    • pp.673-686
    • /
    • 2022
  • Deep learning algorithms for Structural Health Monitoring (SHM) have been extracting the interest of researchers and engineers. These algorithms commonly used loss functions and evaluation indices like the mean square error (MSE) which were not originally designed for SHM problems. An updated loss function which was specifically constructed for deep-learning-based structural damage detection problems has been proposed in this study. By tuning the coefficients of the loss function, the weights for damage localization and quantification can be adapted to the real situation and the deep learning network can avoid unnecessary iterations on damage localization and focus on the damage severity identification. To prove efficiency of the proposed method, structural damage detection using convolutional neural networks (CNNs) was conducted on a truss bridge model. Results showed that the validation curve with the updated loss function converged faster than the traditional MSE. Data augmentation was conducted to improve the anti-noise ability of the proposed method. For reducing the training time, the normalized modal strain energy change (NMSEC) was extracted, and the principal component analysis (PCA) was adopted for dimension reduction. The results showed that the training time was reduced by 90% and the damage identification accuracy could also have a slight increase. Furthermore, the effect of different modes and elements on the training dataset was also analyzed. The proposed method could greatly improve the performance for structural damage detection on both the training time and detection accuracy.

Hybrid machine learning with mode shape assessment for damage identification of plates

  • Pei Yi Siow;Zhi Chao Ong;Shin Yee Khoo;Kok-Sing Lim;Bee Teng Chew
    • Smart Structures and Systems
    • /
    • v.31 no.5
    • /
    • pp.485-500
    • /
    • 2023
  • Machine learning-based structural health monitoring (ML-based SHM) methods are researched extensively in the recent decade due to the availability of advanced information and sensing technology. ML methods are well-known for their pattern recognition capability for complex problems. However, the main obstacle of ML-based SHM is that it often requires pre-collected historical data for model training. In most actual scenarios, damage presence can be detected using the unsupervised learning method through anomaly detection, but to further identify the damage types would require prior knowledge or historical events as references. This creates the cold-start problem, especially for new and unobserved structures. Modal-based methods identify damages based on the changes in the structural global properties but often require dense measurements for accurate results. Therefore, a two-stage hybrid modal-machine learning damage detection scheme is proposed. The first stage detects damage presence using Principal Component Analysis-Frequency Response Function (PCA-FRF) in an unsupervised manner, whereas the second stage further identifies the damage. To solve the cold-start problem, mode shape assessment using the first mode is initiated when no trained model is available yet in the second stage. The damage identified by the modal-based method would be stored for future training. This work highlights the performance of the scheme in alleviating the cold-start issue as it transitions through different phases, starting from zero damage sample available. Results showed that single and multiple damages can be identified at an acceptable accuracy level even when training samples are limited.

Forced-Vibration-Based Identification of Stiffness Reduction Distribution in Thin Plates with an Arbitrary Damage Shape (임의의 손상형태를 갖는 박판의 강제진동 기반 강성저하 분포 규명)

  • Song, Yoo-Seob;Lee, Sang-Youl;Park, Tae-Hyo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.1
    • /
    • pp.81-90
    • /
    • 2008
  • This study deals with a method to identify structural damage using the combined finite element method (FEM) and the advanced damage search technique. The novelty of this study is the application of plates with arbitrary damage shapes and their response due to the anomalies in a structure subjected to impact loading. The technique described in this paper may allow us not only to detect the stiffness distribution of the damaged areas but also to find locations and the extent of damage. To demonstrate the feasibility of the method, the algorithm is applied to a steel thin plate structures with an arbitrary damage shape. The results demonstrate the excellencies of the method from the standpoints of computation efficiency as well as its ability to investigate the arbitrary stiffness reductions.

Damage detection from the variation of parameter matrices estimated by incomplete FRF data

  • Rahmatalla, Salam;Eun, Hee-Chang;Lee, Eun-Taik
    • Smart Structures and Systems
    • /
    • v.9 no.1
    • /
    • pp.55-70
    • /
    • 2012
  • It is not easy to experimentally obtain the FRF (Frequency Response Function) matrix corresponding to a full set of DOFs (degrees of freedom) for a dynamic system. Utilizing FRF data measured at specific positions, with DOFs less than that of the system, as constraints to describe a damaged system, this study identifies parameter matrices such as mass, stiffness and damping matrices of the system, and provides a damage identification method from their variations. The proposed parameter identification method is compared to Lee and Kim's method and Fritzen's method. The validity of the proposed damage identification method is illustrated in a simple dynamic system.