• Title/Summary/Keyword: dam storage capacity

Search Result 67, Processing Time 0.026 seconds

Change of the Vegetation Due to Soyanggang Dam Construction (소양강댐 건설에 따른 주변 식생의 변화)

  • Choi, Ho;Park, Pil-Sun;Kim, Jae-Geun;Suh, Sim-Eun
    • Journal of Wetlands Research
    • /
    • v.12 no.3
    • /
    • pp.1-13
    • /
    • 2010
  • Most of investigations about the effects of dam construction on the surrounding environments have focused mainly on the change of climate conditions and crop production. In order to research the effect of dam construction on the surrounding vegetation, we chose the Soyanggang dam whose storage capacity is the largest in Korea, and was built 33 years ago. We surveyed and analyzed the surrounding vegetation by using quadrat method and measured the soil moisture content among floodplain (FP), 5m above the flood plain (AFP) and control group (CG) which is 3km far from the lake through ridge. The largest value of mean importance percentage of the canopy~understory layer at FP was Salix koreensis (87.9%) and those of AFP and CG was Quercus mongolica (38.9% and 40.4% respectively) and the largest important percentage of the herb layer at FP was Artemisia capillaris (34.2%) and those of AFP and CG was Oplismenus undulatifolius var. undulatifolius (9.4% and 24.6% respectively). The Shannon-Wiener diversity index of shrub~canopy layer at FP (0.26) was lower than AFP (2.34) and CG (2.23) and there was not any significant difference in the herb layer among three groups. The S${\o}$rensen similarity index between FP and AFP, FP and CG was 0, and that of AFP and CG was relatively high. The highest density of tree and subtree with the DBH level of FP was S. koreensis of 5~10cm (240/ha), and that of AFP and CG was Quercus spp. of 15~20cm (400/ha and 466/ha respectively). And the highest density of seedlings of FP was Pinus densiflora (7,040/ha), and that of AFP and CG was Quercus spp. (720/ha and 400/ha respectively). The soil water content of FP (6.28%) was relatively lower than AFP and CG (11.13% and 10.14% respectively; p<.01). These results indicated that construction of Soyanggang dam changed the vegetation of the floodplain, without showing a change in its upland areas.

Determination of Optimal Location of Washlands Considering Design Frequency (설계빈도변화를 고려한 천변저류지 최적위치 선정)

  • Baek, Chun-Woo;Ahn, Tae-Jin
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.7
    • /
    • pp.559-569
    • /
    • 2009
  • Due to environmental, economical and the other limitations, it has been more difficult to construct new large hydraulic structure such as dam. For this reason, it has been tried to use small hydraulic structure such as washland as alternative of hydraulic facility. Because the flood control effect of small hydraulic structure are affected by runoff volume, hydrograph, storage capacity and weir crest elevation, and design frequency must be predetermined for the design of the hydraulic structure. Multiple washlands will be required to satisfy enough peak reduction effect so that considering washlands as a network, rather than individually, are critical to analysis of flood reduction effect. In this study, new index for determination of optimal location for washlands is presented and the existing model for this determination is modified by adopting the new index. Developed new model is applied to Ansung river basin for examination and the new model shows its' applicability as a decision making criteria for the determination of optimal location for washlands.

The Method of Thermal Crack Control about the LNG Tank Wall in Winter (LNG 저장탱크 벽체의 동절기 온도균열제어 방안)

  • Son, Young-Jun;Ha, Jae-Dam;Um, Tai-Sun;Lee, Jong-Ryul;Baek, Seung-Jun;Park, Chan-Kyu
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.637-640
    • /
    • 2008
  • Since the first underground LNG tank was constructed in Incheon, continuously many LNG tanks were constructed in Tongyoung and Pyongtaek. The storage capacity of LNG tank increased by 200,000kl and the structure size and the concrete mixing design has changed. The crack of concrete induced by the heat of hydration is a serious problem, particularly in massive concrete structures. In order to control the thermal crack of massive concrete, the low heat portland cement(type Ⅳ) is applied to bottom annular part, bottom central part, lower walls and ring beam. In this study, in order to thermal crack control about the LNG tank wall(lot 8 of #16 Pyongtaek LNG tank) in winter, analysed the concrete temperature, the extention of term, the curing condition and the concrete mixing design. When the concrete mixing design is changed from OPC+FA25% to LHC+FA25%, the thermal crack index is 1.33 and satisfied with construction specifications(over 1.2).

  • PDF

Calculation of Unit Hydrograph from Discharge Curve, Determination of Sluice Dimension and Tidal Computation for Determination of the Closure curve (단위유량도와 비수갑문 단면 및 방조제 축조곡선 결정을 위한 조속계산)

  • 최귀열
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.7 no.1
    • /
    • pp.861-876
    • /
    • 1965
  • During my stay in the Netherlands, I have studied the following, primarily in relation to the Mokpo Yong-san project which had been studied by the NEDECO for a feasibility report. 1. Unit hydrograph at Naju There are many ways to make unit hydrograph, but I want explain here to make unit hydrograph from the- actual run of curve at Naju. A discharge curve made from one rain storm depends on rainfall intensity per houre After finriing hydrograph every two hours, we will get two-hour unit hydrograph to devide each ordinate of the two-hour hydrograph by the rainfall intensity. I have used one storm from June 24 to June 26, 1963, recording a rainfall intensity of average 9. 4 mm per hour for 12 hours. If several rain gage stations had already been established in the catchment area. above Naju prior to this storm, I could have gathered accurate data on rainfall intensity throughout the catchment area. As it was, I used I the automatic rain gage record of the Mokpo I moteorological station to determine the rainfall lntensity. In order. to develop the unit ~Ydrograph at Naju, I subtracted the basic flow from the total runoff flow. I also tried to keed the difference between the calculated discharge amount and the measured discharge less than 1O~ The discharge period. of an unit graph depends on the length of the catchment area. 2. Determination of sluice dimension Acoording to principles of design presently used in our country, a one-day storm with a frequency of 20 years must be discharged in 8 hours. These design criteria are not adequate, and several dams have washed out in the past years. The design of the spillway and sluice dimensions must be based on the maximun peak discharge flowing into the reservoir to avoid crop and structure damages. The total flow into the reservoir is the summation of flow described by the Mokpo hydrograph, the basic flow from all the catchment areas and the rainfall on the reservoir area. To calculate the amount of water discharged through the sluiceCper half hour), the average head during that interval must be known. This can be calculated from the known water level outside the sluiceCdetermined by the tide) and from an estimated water level inside the reservoir at the end of each time interval. The total amount of water discharged through the sluice can be calculated from this average head, the time interval and the cross-sectional area of' the sluice. From the inflow into the .reservoir and the outflow through the sluice gates I calculated the change in the volume of water stored in the reservoir at half-hour intervals. From the stored volume of water and the known storage capacity of the reservoir, I was able to calculate the water level in the reservoir. The Calculated water level in the reservoir must be the same as the estimated water level. Mean stand tide will be adequate to use for determining the sluice dimension because spring tide is worse case and neap tide is best condition for the I result of the calculatio 3. Tidal computation for determination of the closure curve. During the construction of a dam, whether by building up of a succession of horizontael layers or by building in from both sides, the velocity of the water flowinii through the closing gapwill increase, because of the gradual decrease in the cross sectional area of the gap. 1 calculated the . velocities in the closing gap during flood and ebb for the first mentioned method of construction until the cross-sectional area has been reduced to about 25% of the original area, the change in tidal movement within the reservoir being negligible. Up to that point, the increase of the velocity is more or less hyperbolic. During the closing of the last 25 % of the gap, less water can flow out of the reservoir. This causes a rise of the mean water level of the reservoir. The difference in hydraulic head is then no longer negligible and must be taken into account. When, during the course of construction. the submerged weir become a free weir the critical flow occurs. The critical flow is that point, during either ebb or flood, at which the velocity reaches a maximum. When the dam is raised further. the velocity decreases because of the decrease\ulcorner in the height of the water above the weir. The calculation of the currents and velocities for a stage in the closure of the final gap is done in the following manner; Using an average tide with a neglible daily quantity, I estimated the water level on the pustream side of. the dam (inner water level). I determined the current through the gap for each hour by multiplying the storage area by the increment of the rise in water level. The velocity at a given moment can be determined from the calcalated current in m3/sec, and the cross-sectional area at that moment. At the same time from the difference between inner water level and tidal level (outer water level) the velocity can be calculated with the formula $h= \frac{V^2}{2g}$ and must be equal to the velocity detertnined from the current. If there is a difference in velocity, a new estimate of the inner water level must be made and entire procedure should be repeated. When the higher water level is equal to or more than 2/3 times the difference between the lower water level and the crest of the dam, we speak of a "free weir." The flow over the weir is then dependent upon the higher water level and not on the difference between high and low water levels. When the weir is "submerged", that is, the higher water level is less than 2/3 times the difference between the lower water and the crest of the dam, the difference between the high and low levels being decisive. The free weir normally occurs first during ebb, and is due to. the fact that mean level in the estuary is higher than the mean level of . the tide in building dams with barges the maximum velocity in the closing gap may not be more than 3m/sec. As the maximum velocities are higher than this limit we must use other construction methods in closing the gap. This can be done by dump-cars from each side or by using a cable way.e or by using a cable way.

  • PDF

Estimation of sediment deposition rate in collapsed reservoirs(wetlands) using empirical formulas and multiple regression models (경험공식 및 다중회귀모형을 이용한 붕괴 저수지(습지) 비퇴사량 추정)

  • Kim, Donghyun;Lee, Haneul;Bae, Younghye;Joo, Hongjun;Kim, Deokhwan;Kim, Hung Soo
    • Journal of Wetlands Research
    • /
    • v.23 no.4
    • /
    • pp.287-295
    • /
    • 2021
  • As facilities such as dam reservoir wetlands and agricultural irrigation reservoir wetlands are built, sedimentation occurs over time through erosion, sedimentation transport, and sediment deposition. Sedimentation issues are very important for the maintenance of reservoir wetlands because long-term sedimentation of sediments affects flood and drought control functions. However, research on resignation has been estimated mainly by empirical formulas due to the lack of available data. The purpose of this study was to calculate and compare the sediment deposition rate by developing a multiple regression model along with actual data and empirical formulas. In addition, it was attempted to identify potential causes of collapse by applying it to 64 reservoir wetlands that suffered flood damage due to the long rainy season in 2020 due to reservoir wetland sedimentation and aging. For the target reservoir, 10 locations including the GaGog reservoir located in Miryang city, Gyeongsangnam province in South Korea, where there is actual survey information, were selected. A multiple regression model was developed in consideration of physical and climatic characteristics, and a total of four empirical formulas and sediment deposition rate were calculated. Using this, the error of the sediment deposition rate was compared. As a result of calculating the sediment deposition rate using the multiple regression model, the error was the lowest from 0.21(m3km2/yr) to 2.13(m3km2/yr). Therefore, based on the sediment deposition rate estimated by the multi-regression model, the change in the available capacity of reservoir wetlands was analyzed, and the effective storage capacity was found to have decreased from 0.21(%) to 16.56(%). In addition, the sediment deposition rate of the reservoir where the overflow damage occurred was relatively higher than that of the reservoir where the piping damage occurred. In other words, accumulating sediment deposition rate at the bottom of the reservoir would result in a lack of acceptable effective water capacity and reduced reservoir flood and drought control capabilities, resulting in reservoir collapse damage.

Reservoir Operating System Using Sampling Stochastic Dynamic Programming for the Han River Basin (표본 추계학적 동적계획법을 사용한 한강수계 저수지 운영시스템 개발)

  • Eum, Hyung-Il;Park, Myung-Ky
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.1
    • /
    • pp.67-79
    • /
    • 2010
  • Korea water resources corporation (K-Water) has developed the real-time water resources management system for the Nakdong and the Geum River basin to efficiently operate multi-purpose dams in the basins. This study has extended to the Han River basin for providing an effective ending target storage of a month to the real-time water resources management system using Sampling Stochastic Dynamic Programming (SSDP), consequently increasing the efficiency of the reservoir system. The optimization model were developed for three reservoirs, named Soyang, Chungju, and Hwacheon, with high priority in terms of the amounts of effective capacity and water supply for the basin. The number of storage state variable for each dam to set an optimization problem has been assigned from the results of sensitivity analysis. Compared with the K-water operating policy with the target water supply elevations, the optimization model suggested in this study showed that the shortfalls are decreased by 37.22 MCM/year for the required water demands in the basin, even increasing 171 GWh in hydro electronic power generation. In addition, the result of a reservoir operating system during the drawdown period applied to real situation demonstrates that additional releases for water quality or hydro electronic power generation would be possible during the drawdown period between 2007 and 2008. On the basis of these simulation results, the applicability of the SSDP model and the reservoir operating system is proved. Therefore, the more efficient reservoir operation can be achieved if the reservoir operating system is extended further to other Korean basins.

Regional Development And Dam Construction in Korea (한국의 지역개발과 댐건설)

  • 안경모
    • Water for future
    • /
    • v.9 no.1
    • /
    • pp.38-42
    • /
    • 1976
  • Because of differences in thoughts and ideology, our country, Korea has been deprived of national unity for some thirty years of time and tide. To achieve peaceful unification, the cultivation of national strength is of paramount importance. This national strength is also essential if Korea is to take rightful place in the international societies and to have the confidence of these societies. However, national strength can never be achieved in a short time. The fundamental elements in economic development that are directly conducive to the cultivation of national strength can be said to lie in -a stable political system, -exertion of powerful leadership, -cultivation of a spirit of diligence, self-help and cooperation, -modernization of human brain power, and -establishment of a scientific and well planned economic policy and strong enforcement of this policy. Our country, Korea, has attained brilliant economic development in the past 15 years under the strong leadership of president Park Chung Hee. However, there are still many problems to be solved. A few of them are: -housing and home problems, -increasing demand for employment, -increasing demand for staple food and -the need to improve international balance of payment. Solution of the above mentioned problems requires step by step scientific development of each sector and region of our contry. As a spearhead project in regional development, the Saemaul Campaign or new village movement can be cited. The campaign is now spreading throughout the country like a grass fire. However, such campaigns need considerable encouragement and support and the means for the desired development must be provided if the regional and sectoral development program is to sucdceed. The construction of large multipurpose dams in major river basin plays significant role in all aspects of national, regional and sectoral development. It ensures that the water resource, for which there is no substitute, is retained and utilized for irrigation of agricultural areas, production of power for industry, provision of water for domestic and industrial uses and control of river water. Water is the very essence of life and we must conserve and utilize what we have for the betterment of our peoples and their heir. The regional and social impact of construction of a large dam is enormous. It is intended to, and does, dras tically improve the "without-project" socio-economic conditions. A good example of this is the Soyanggang multipurpose dam. This project will significantly contribute to our national strength by utilizing the stored water for the benefit of human life and relief of flood and drought damages. Annual average precipitation in Korea is 1160mm, a comparatively abundant amount. The catchment areas of the Han River, Keum River, and Youngsan River are $62,755\textrm{km}^2$, accounting for 64% of the national total. Approximately 62% of the national population inhabits in this area, and 67% of the national gross product comes from the area. The annual population growth rate of the country is currently estimated at 1.7%, and every year the population growth in urban area increases at a rising rate. The population of Seoul, Pusan, and Taegu, the three major cities in Korea, is equal to one third of our national total. According to the census conducted on October 1, 1975, the population in the urban areas has increased by 384,000, whereas that in rural areas has decreased by 59,000,000 in the past five years. The composition of population between urban and rural areas varied from 41%~59% in 1959 to 48%~52% in 1975. To mitigate this treand towards concentration of population in urban areas, employment opportunities must be provided in regional and rural areas. However, heavy and chemical industries, which mitigate production and employment problems at the same time, must have abundant water and energy. Also increase in staple food production cannot be attained without water. At this point in time, when water demand is rapidly growing, it is essential for the country to provide as much a reservoir capacity as possible to capture the monsoon rainfall, which concentarated in the rainy seaon from June to Septesmber, and conserve the water for year round use. The floods, which at one time we called "the devil" have now become a source of immense benefit to Korea. Let me explain the topographic condition in Korea. In northern and eastern areas we have high mountains and rugged country. Our rivers originate in these mountains and flow in a general southerly or westerly direction throught ancient plains. These plains were formed by progressive deposition of sediments from the mountains and provide our country with large areas of fertile land, emminently suited to settlement and irrigated agricultural development. It is, therefore, quite natural that these areas should become the polar point for our regional development program. Hower, we are fortunate in that we have an additional area or areas, which can be used for agricultural production and settlement of our peoples, particularly those peoples who may be displaced by the formation of our reservoirs. I am speaking of the tidelands along the western and southern coasts. The other day the Ministry of Agriculture and Fishery informed the public of a tideland reclamation of which 400,000 hectares will be used for growing rice as part of our national food self-sufficiency programme. Now, again, we arrive at the need for water, as without it we cannot realize this ambitious programme. And again we need those dams to provide it. As I mentioned before, dams not only provide us with essential water for agriculture, domestic and industrial use, but provide us with electrical energy, as it is generally extremely economical to use the water being release for the former purposes to drive turbines and generators. At the present time we have 13 hydro-electric power plants with an installed capacity of 711,000 kilowatts equal to 16% of our national total. There are about 110 potential dams ites in the country, which could yield about 2,300,000 kilowatts of hydro-electric power. There are about 54 sites suitable for pumped storage which could produce a further 38,600,000 kilowatts of power. All available if we carefully develop our water resources. To summarize, water resource development is essential to the regional development program and the welfare of our people, it must proceed hand-in-hand with other aspects of regional development such as land impovement, high way extension, development of our forests, erosion control, and develop ment of heavy and chemical industries. Through the successful implementation of such an integrated regional development program, we can look forward to a period of national strength, and due recognition of our country by the worlds societies.

  • PDF