• Title/Summary/Keyword: dam leakage

Search Result 62, Processing Time 0.025 seconds

A Cache Privacy Protection Mechanism based on Dynamic Address Mapping in Named Data Networking

  • Zhu, Yi;Kang, Haohao;Huang, Ruhui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.12
    • /
    • pp.6123-6138
    • /
    • 2018
  • Named data networking (NDN) is a new network architecture designed for next generation Internet. Router-side content caching is one of the key features in NDN, which can reduce redundant transmission, accelerate content distribution and alleviate congestion. However, several security problems are introduced as well. One important security risk is cache privacy leakage. By measuring the content retrieve time, adversary can infer its neighbor users' hobby for privacy content. Focusing on this problem, we propose a cache privacy protection mechanism (named as CPPM-DAM) to identify legitimate user and adversary using Bloom filter. An optimization for storage cost is further provided to make this mechanism more practical. The simulation results of ndnSIM show that CPPM-DAM can effectively protect cache privacy.

A Study on the Effect of Applying Water Seepage Lowering Method Using Swelling Waterstop for Expansion Joint in the Concrete Dam (콘크리트 댐에서 수축이음부의 수팽창성 차수재를 이용한 침투저감 공법 적용효과 연구)

  • Han, Kiseung;Lee, Seungho;Kim, Sanghoon;Kim, Sejin;Pai, Sungjin
    • Journal of the Korean GEO-environmental Society
    • /
    • v.22 no.10
    • /
    • pp.21-29
    • /
    • 2021
  • Most concrete gravity-type dams in and out of the country were constructed by column method to control cracks caused by concrete hydration heat generated during construction, resulting in a certain level of leakage after impoundment through various causes, such as contraction joints and construction joints. However, due to the characteristics of concrete structures that shrink and expand according to temperature, concrete dams have vertical joints and drains to allow penetration. PVC waterproof shows excellent effects in completion of the dam, which however increases the possibility of interfacial failure due to different thermal expansion. Other causes of penetration may include problems with quality control during installation, generation of cracks due to heat of hydration of concrete, waterproofing methods, etc. In the case of Bohyunsan Dam in Yeongcheon, North Gyeongsang Province, the amount of drainage in the gallery was checked and underwater, and it was confirmed that there are many penetrations from drainage holes connected to vertical joints, and that some of the PVC waterproofs are not fully operated. As a new method to prevent penetration through vertical joints, D.S.I.M. (Dam Sealing Innovation Method) developed by World E&C was applied to Bohyunsan Dam and checked the amount of drainage in the gallery. As a result of first testing three most leaking vertical joints, the drain in the gallery was reduced by 87% on the average and then applied to the remaining 13 locations, which showed a 83% reduction effect based on the total drain in the gallery. Summing up these results, it was found that D.S.I.M. preventing water leakage from the upstream face is a valid construction method to reduce the water see-through and penetration quantity seen in downstream faces of concrete dams. If D.S.I.M. is applied to other concrete dams at domestic and abroad, it is expected that it will be very effective to prevent water leakage through vertical joints that are visible from downstream faces.

Quantitative Evaluation of Leak Index from Electrical Resistivity and Induced Polarization Surveys in Embankment Dams (전기비저항 및 유도분극 탐사에 의한 저수지 누수지수 산출)

  • Cho, In Ky;Kim, Yeon Jung;Song, Sung Ho
    • Geophysics and Geophysical Exploration
    • /
    • v.25 no.3
    • /
    • pp.120-128
    • /
    • 2022
  • There are 17,000 reservoir dams in Korea, of which more than 85% were built over 50 years ago. Old embankment dams are weakened by internal erosion and suffusion phenomena due to preferential leakage paths and this ongoing weakening can cause their failure. Therefore, early warning associated with leakage in an embankment dam is crucial to prevent its failure. An electrical resistivity survey is a non-destructive, real-time and in-situ technique for detecting the development of leakage zones and general conditions of embankment dams. Because of its advantages, the electrical resistivity survey is widely used for reservoir safety inspections. However, the electrical resistivity survey is still not officially included in the precise safety inspection of reservoir dams because it cannot present a quantitative index of dam safety. In this study, we propose a method for calculating the leak index according to the water content evaluated from the electrical resistivity survey and/or induced polarization survey. Particularly, by proposing a quantitative leak index calculation method from monitoring surveys and independent surveys, we provide a theoretical basis for including electrical resistivity and induced polarization surveys as components of the precise safety inspection of reservoirs dams.

Detection of anomalous features in an earthen dam using inversion of P-wave first-arrival times and surface-wave dispersion curves (P파 초동주시와 표면파 분산곡선 역산을 통한 흙댐의 이상대 탐지)

  • Kim, K.Y.;Jeon, K.M.;Hong, M.H.;Park, Young-Gyu
    • Geophysics and Geophysical Exploration
    • /
    • v.14 no.1
    • /
    • pp.42-49
    • /
    • 2011
  • To locate anomalous features including seepage pathways through the Daeryong earth-fill dam, P and Rayleigh waves were recorded along a 250-m profile on the crest of the dam. Seismic energy was generated using a 5-kg sledgehammer and detected by 24 4.5-Hz vertical-axis geophones installed at 3-m intervals. P-wave and apparent S-wave velocities of the reservoir dam and underlying bedrock were then inverted from first-arrival traveltimes and dispersion curves of Rayleigh waves, respectively. Apparent dynamic Poisson's ratios as high as 0.46 were obtained at the base of the dam near its north-east end, where an outlet conduit occurs, and in the clay core body near the south-west end of the profile where the dam was repeatedly grouted to abate seepage before our survey. These anomalies of higher Poisson's ratios in the upper part of clay core were also associated with effusion of grout on the downstream slope of the dam during post-survey grouting to abate leakage. Combining P-wave traveltime tomography and inversion of Rayleigh wave velocities was very effective in detecting potential pathways for seepage and previous grouted zones in this earthen dam.

Flood Control Measures of the nakdong River Basins (낙동강유역 홍수방지대책 제언)

  • 구본충
    • Journal of the Korean Professional Engineers Association
    • /
    • v.35 no.4
    • /
    • pp.48-51
    • /
    • 2002
  • Due to locally torrential downpours which shows Increasing trend, high tide of the southern sea of Korea and etc. submerged and Inundated districts at the lowlands of Nakdong River Basins has been Increasing year by year In order to protect flood hit, it is necessary to make an early implementation of flood control dam and other flood protection works according to Nakdong River Comprehensive Development Project. In addition to the large scale comprehensive projects, local key measures, such as lowland development control, embankment reinforcement, leakage protection, maintenance and management of facilities, increase in pumping station, will be highly effective.

  • PDF

Temperature Variation during Construction in the Concrete Dam Body by Artificial Cooling (강제냉각(强制冷却)에 의한 콘크리트 제체(堤體)의 시공중(施工中) 온도변동(溫度變動))

  • Lee, Bae Ho;Kim, Hong Cheol
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.9 no.3
    • /
    • pp.39-48
    • /
    • 1989
  • The concrete temperature in mass concrete rises rapidly above the placing temperature owing to the heat given off by the hydrating cement. This temperature rise produces tensile stress and cracks which later become the cause of water leakage in concrete structures. It is essential, therefore, to reduce the interior heat of concrete dam given off by hydrating cement by artificial cooling. The present study aiming to study the temperature variations in mass concrete by pipe cooling, compars the actual measurements of Chungju Dam with the temperature calculated by Finite Difference Method(FDM), and it found that the results closely agree with each other. Based on these results, the analyses are performed simulate the interior temperature history of concerte dam made of type II (moderate heat) portland cement under various coditions.

  • PDF

Seepage Quantity Evaluation of a Fill Dam using 3D FEM Analysis (3차원 수치해석에 의한 필 댐의 누수량 평가)

  • Choi, Byoungil
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.8
    • /
    • pp.45-49
    • /
    • 2015
  • Using 2D numerical analysis that covers the largest section of the dam body, a process is generally performed when evaluating its stability against seepage. The quantity of seepage is first obtained by assuming that its bottom topography is in the simple form of a rectangle, it is then calculated by reflecting its sectional shape during this process of analyzing the seepage quantity. Considering that various forms of dams are being constructed on various types of ground, thanks to more recent technological advances, it is judged more appropriate to draw a conclusion by means of the results on reflecting the realistic shape and topographical conditions of the dam body through 3D numerical analysis. Therefore, this study intends to present a method designed to carry out safety management by evaluating the correct quantity of water leakage that passes only through the dam body, having excluded other factors that include the amount of rainfall through the 3D FEM analysis.

Evaluation of Permeability on Construction Material in CFRD Bedding Zone (CFRD Bedding Zone의 축조재료에 대한 투수성 평가)

  • Han, Sang-Hyun;Yea, Geu-Guwen
    • The Journal of Engineering Geology
    • /
    • v.19 no.4
    • /
    • pp.493-499
    • /
    • 2009
  • Recently, the construction of Concrete Faced Rockfill Dam (CFRD) is increasing because rock material resources are plenty in Korea. Bedding zone in the CFRD is necessary enough bearing capacity to support the concrete face slab uniformly and enough impermeability to prevent the loss of fine soils in case of leakage from the concrete slab face. Therefore, cut-off the water leakage in bedding zone securely is the key factor influencing the safety of CFRD. Tested materials satisfied with the specification of particle size distribution at the Bedding Zone area are chosen for conducting permeability tests, which are done to evaluate the property of cut off the materials. Based on the test results, the effects of cut off the materials are investigated by considering the coefficient of permeability, the soil particle distribution, and the dry unit weight. Especially, the relationships between coefficient of permeability with effective size(D10), dry unit weight, and weight passing percent the No.4 sieve are suggested, and also the variation of coefficient of permeability with time are proposed.

Compaction Characteristics of Zone-1 Material in Concrete Faced Rockfill Dam (콘크리트 표면 차수벽형 석괴댐의 Zone-1재료에 대한 다짐특성)

  • Yea, Geu-Guwen;Han, Sang-Hyun;Lee, Jae-Ho
    • Journal of the Korean Geosynthetics Society
    • /
    • v.6 no.2
    • /
    • pp.9-15
    • /
    • 2007
  • Bedding zone in CRFD (Concrete Faced Rockfill Dam) requires bearing capacity to support the concrete face slab uniformly. Also, shear strength which is a key factor in slope stability and impermeability which is to prevent a loss of soils in case of leakage of concrete slab face are needed. In this study, trial prototype construction for bedding zone in CRFD was performed to investigate the compaction characteristics of bedding zone according to the frequency of compaction, water contents and so on. As a results of series of field test, the compaction characteristics of bedding zone in CRFD was affected considerably by the depth of compaction layer and frequency of compaction.

  • PDF

A Study on Geothermal Characteristics of Dam Body and Seepage Flow (댐 제체 및 침투수 흐름의 지열학적 고찰)

  • Park, Dong-Soon;Jung, Woo-Sung;Kim, Hyoung-Soo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.75-85
    • /
    • 2006
  • In recent geotechnical engineering, geothermal approach has been on the horizon to deal with geoenvironmental issues, freezing and thawing problems, and seepage phenomenon in dams and embankments. In this study, geothermal characteristic through inner body of dams and its influence on the seepage flow were experimented by lab test and field instrumentation. Also, one of up-to-date temperature monitoring technique, called as multi-channel thermal line sensing, was evaluated its availability. As a result of lab test, it is found that the seepage flow has influence on the geothermal characteristic and a potential of finding phreatic line and seepage fluctuation could be possible by continuous temperature monitoring using thermal line sensing skills. These kine of geothermal information could be available to the modelling of water geo-structure interaction. Out of short-term field tests, clear water table and temperature distribution of a dam were easily found through temperature monitoring in holes located near a reservoir and holes within a depth of constant temperature layer. However, it is also found that the geothermal flow and finding seepage line could not be easily understandable through multi-channel temperature monitoring because of the existence of constant temperature field, thermal conductivity of soils and rocks, and unsaturated characteristics of geo-material. In this case, long-term geothermal monitoring is recommended to find sudden fluctuation of seepage line and amount of leakage.

  • PDF