본 논문에서는 지능형 주택의 필수 요소 기술의 하나인 사용자 신원을 파악하며 또한 현재 사용자의 위치를 추정하는데 직접적으로 사용이 가능한 방으로의 들어오고 나감 (즉, 출/입 행동)을 감지하는 효과적인 방법을 제안한다. 개발된 시스템은 [1]에 제안되었던 방법을 개선시킨 것으로 초음파 센서 및 PC를 이용하여 만들어졌던 시스템을 8bit 마이크로 컨트롤러를 사용한 임베디드 시스템의 형태로 구현하였다. 이와 더불어 복수개의 센싱 시스템에서 감지한 신호를 블루투스에 기반한 무선 전송 채널을 통해 1개의 중앙 컴퓨터로 전송하는 무선 센서 네트워크를 구성하였다. 이렇게 구성된 센서 네트워크를 통해 각 센싱 모듈이 검출한 사용자 인식 및 인식된 사용자의 출/입 이벤트를 기록, 저장하는 시스템을 구현하였다. 개발된 시스템은 임베디드 시스템의 특성에 적합하도록 기존 PC기반으로 개발된 알고리즘을 수정 개선하였고, 성능 검증을 위해 일반 가정집에 3개의 센싱 모듈을 설치하여 3명의 사용자를 대상으로 실험을 수행하였다.
Being able to monitor the heart will allow the diagnosis of heart diseases for patients during daily activities, and the detection of burden on the heart during strenuous exercise. Furthermore, with the help of U-health technology, immediate medical action can be taken, in the case of abnormal symptoms of the heart in daily life. Therefore, it appears to be necessary to develop the corresponding technology to monitor the condition of the heart daily. In this study, a novel wearable smart system was proposed, to monitor the activity of the heart in daily life, and to further evaluate the rhythm of arrhythmia. The wearable system includes three modified bipolar conductive fiber electrodes in the chest part, which can resolve the reduction problem of the magnitude of the signal, by magnifying the signal and removing the noise, to obtain high affinity and validity for medical-type usage (<0.903%). The biological signal acquisition and data lines, and the signal processing engine and communication consist of a conductive ink, and the pic18 and ANT protocol nRF24AP2, respectively. The proposed algorithm was able to detect a strong ECG, signal and r-point passing over the noise. The confidence intervals were 96 %, which could satisfy the requirement to detect arrhythmia under the unconstrained conditions.
In today's age when telecommunications using satellite has become part of our daily lives, one has to be employ preventive measures to avert any possible danger, of which solar activity is the major cause. Coronal mass ejections (CMEs) heading towards the Earth can lead to disturbances in the Earth's magnetosphere, if their magnetic field is oriented southward. Monitoring of solar filaments in this case becomes very very crucial, as their eruption is associated with most of the CMEs. Monitoring of solar filaments in this case becomes very very crucial, as their eruption is associated with most of the CMEs. Also, filaments show activation up to a few hours prior to launch of a CME and thus can provide advance warning. In this study, we present an algorithm for the detection of solar filaments seen in the extreme ultraviolet (EUV) from Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory (SDO). Various morphological operations are employed to identify and extract the filaments. These filaments are then tracked in order to determine their size and location continuously.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2008.10a
/
pp.265-269
/
2008
Home health care with compact wearable units sounds to be a convenient solution for the elderly people living independently. This paper presents a method to detect fall from the other activities of daily living and also to classify those activities. This kind of ambulatory monitoring enables them to get an emergency help in the case of the fatal fall event and can provide their general health status by observing the activities being performed in daily life. A tri-axial accelerometer sensor is used to get the acceleration anomalies associated with the user's movements. The three axis acceleration data are transferred to the base station sensor node via an IEEE 802.15.4 compliant zigbee module. The base station sensor node sends the data to base station PC for an offline processing. This work shows the feature set preparation using the principal component analysis (PCA) for the designing of neural network. The work includes the most common activities of daily living (ADL) like Rest, Walk and Run along with the detection of fall events from ADL. The angle from the vertical is found to be the most significant feature parameter for classification of fall while mean, standard deviation and FFT coefficients were used as the feature parameter for classifying the other activities under consideration. The accuracy for detection of fall events is 86%. The overall accuracy for ADL and fall is 94%.
Proceedings of the Korean Information Science Society Conference
/
2008.06b
/
pp.124-129
/
2008
독거노인의 수가 증가함에 따라 노인의 건강한 생활 패턴 유지 및 응급상황탐지 등을 위해 생활모니터링에 대한 연구가 요구되고 있다. 본 논문에서는 단순히 사물에 대한 접촉만으로 일상생활행위(ADL : activity of daily living)를 인식하기 보다는 노인의 행동과 연관이 있는 사물의 접촉을 함께 고려한 행위인 요소ADL를 인식하여 정확하게 최종 ADL를 인식할 수 있도록 한다. 또한, 행위센서로부터 인식된 물리적 행위분류는 간혹 튀는 데이터들로 인해 잘못된 결과가 나오므로, 이를 보정함으로써 인식의 정확성을 더 보장한다. 실험결과는 8개의 요소ADL에 대해 97% 이상의 인식 결과를 보이며, 이는 최종 ADL을 인식하는데 효율적으로 적용할 수 있음을 보인다.
Journal of Institute of Control, Robotics and Systems
/
v.14
no.3
/
pp.248-253
/
2008
This paper presents a sensing system for smart home which can detect an location transition events such as entrance/exit of a member and identify the user in a group at the same time. The proposed system is compose of two sub-systems; a wireless sensor network system and a database server system. The wireless sensing system is designed as a star network where each of sensing modules with ultrasonic sensors and a Bluetooth RF module connect to a central receiver called Bluetooth access point. We propose a method to discriminate a user by measuring the height of the user. The differences in the height of users is a key feature for discrimination. At the same time, the each sensing module can recognize whether the user goes into or out a room by using two ultrasonic sensors. The server subsystem is a sort of data logging system which read the detected event from the access point and then write it into a database system. The database system could provide the location transition information to wide range of context-aware applications for smart home easily and conveniently. We evaluate the developed method with experiments for three subjects in a family with the installation of the developed system into a real house.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2021.05a
/
pp.249-251
/
2021
In this paper, we introduce the deep-learning system using Tensorflow for recognizing situations that can occur fall situations when the elderly are moving or standing. Fall detection uses the LSTM (long short-term memory) learned using Tensorflow to determine whether it is a fall or not by data measured from wearable accelerator sensor. Learning is carried out for each of the 7 behavioral patterns consisting of 4 types of activity of daily living (ADL) and 3 types of fall. The learning was conducted using the 3-axis acceleration sensor data. As a result of the test, it was found to be compliant except for the GDSVM(Gravity Differential SVM), and it is expected that better results can be expected if the data is mixed and learned.
Journal of the Korea Society of Computer and Information
/
v.27
no.2
/
pp.25-32
/
2022
In this paper, we propose a pet monitoring system based on deep learning using an activity recognition device. The system consists of a pet's activity recognition device, a pet owner's smart device, and a server. Accelerometer and gyroscope data were collected from an Arduino-based activity recognition device, and the number of steps was calculated. The collected data is pre-processed and the amount of activity is measured by recognizing the activity in five types (sitting, standing, lying, walking, running) through a deep learning model that hybridizes CNN and LSTM. Finally, monitoring of changes in the activity, such as daily and weekly briefing charts, is provided on the pet owner's smart device. As a result of the performance evaluation, it was confirmed that specific activity recognition and activity measurement of pets were possible. Abnormal behavior detection of pets and expansion of health care services can be expected through data accumulation in the future.
This paper presents calorie expenditure prediction model of daily activity of elderly living alone for LBS(Location Based Service) applications. The proposed method is to describe the daily activity patterns of older adult using PIR (Passive InfraRed) motion sensors and to examine the relationships between physical activity and calorie expenditure. The developed motion detecting system is composed of a sensing system and a server system. The motion detecting system is a set of wireless sensor nodes which has PIR sensor to detect a motion of elder. Each sensing node sends its detection signal to a home gateway via wireless link. The home gateway stores the received signals into a remote database. The server system is composed of a database server and a web server, which provides web-based monitoring system to caregivers for more effective services. The experiment results show the adaptability and feasibility of the calorie expenditure model.
Journal of Korea Society of Digital Industry and Information Management
/
v.7
no.1
/
pp.19-29
/
2011
The u-Healthcare system, a new paradigm, provides healthcare and medical service anytime, anywhere in daily life using wired and wireless networks. It only doesn't reach u-Hospital at home, to manage efficient personal health in fitness space, it is essential to feedback process through measuring and analyzing a personal vital signs. MBAN(Medical Body Area Network) is a core of this technology. MBAN, a new paradigm of the u-Healthcare system, can provide healthcare and medical service anytime, anywhere on real time in daily life using u-sensor networks. In this paper, an ontology-based context-awareness in MBAN proposed system development methodology. Accordingly, ontology-based context awareness system on MBAN to Elderly/severe patients/aged/, with measured respiratory rate/temperature/pulse and vital signs having small variables through u-sensor network in real-time, discovered abnormal signs and emergency situations which may happen to people at sleep or activity, alarmed and connected with members of a family or medical emergency alarm(Emergency Call) and 119 system to avoid sudden accidents for early detection. Therefore, We have proposed that accuracy of biological signal sensing and the confidence of ontology should be inspected.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.