• Title/Summary/Keyword: dSPACE 1104

Search Result 26, Processing Time 0.021 seconds

Case study: application of NAT (New Abrasion Tester) for predicting TBM disc cutter wear and comparison with conventional methods (TBM 디스크 커터 마모 예측에 대한 NAT의 현장 적용 및 기존 방법과의 비교)

  • Kim, Dae-Young;Shin, Young-Jin;Jung, Jae-Hoon;Kang, Han-Byul
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.6
    • /
    • pp.1091-1104
    • /
    • 2018
  • Wear prediction of TBM disc cutters is a very important issue during design as well as construction stages for hard rock TBMs as the cutter head intervention is directly related to the time and cost of tunneling. For that, some methods such as NTNU, CSM and Gehring models were used to predict disc cutter wear and intervention interval. There are however some problems to be addressed in these models in terms of accuracy and time for testing, so that a NAT (New Abrasion Tester) model has been developed in order to achieve simplicity and reliability together at the same time (Farrokh and Kim, 2018). On the basis, the proposed NAT model has been applied to ${\bigcirc}{\bigcirc}$ project in Korea. A comparative study was performed to compare with the conventional methods and as a result the NAT model showed a very good agreement with actual cutter life. The NAT model will be further applied to other projects to establish credibility.

Three-Phase Reference Current Generator Employing with Kalman Filter for Shunt Active Power Filter

  • Hasim, Ahmad Shukri Abu;Ibrahim, Zulkifilie;Talib, Md. Hairul Nizam;Dardin, Syed Mohd. Fairuz Syed Mohd.
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.151-160
    • /
    • 2017
  • This paper presents a new technique of reference current generator based on Kalman filter (KF) estimator for three-phase shunt active power filter (APF). The stationary reference frame (d-q algorithm) is used to transform the load currents into DC component. The harmonics of load currents are extracted and the three-phase reference currents are generated using KF estimator. The work is simulated using Matlab/Simulink platform. To validate the simulation results, an experimental test-rig have been perform using real-time control dSPACE DS1104. In addition, hysteresis current control was used to generate the switching signal for the correction of the harmonics in the system. The non-linear load were constructed with three-phase rectifier which connected in series with inductor and parallel with resistor and capacitor. The results shows that the new technique of shunt APF embedded with KF is proven to eliminate the harmonics created by the non-linear load with some improvement on the total harmonics distortion (THD).

Capacitor Voltage Boosting and Balancing using a TLBC for Three-Level NPC Inverter Fed RDC-less PMSM Drives

  • Halder, Sukanta;Kotturu, Janardhana;Agarwal, Pramod;Srivastava, Satya Prakash
    • Journal of Power Electronics
    • /
    • v.18 no.2
    • /
    • pp.432-444
    • /
    • 2018
  • This paper presents a capacitor voltage balancing topology using a three-level boost converter (TLBC) for a neutral point clamped (NPC) three-level inverter fed surface permanent magnet synchronous motor drive (SPMSM). It enhanced the performance of the drive in terms of its voltage THD and torque pulsation. The main attracting feature of the proposed control is the boosting of the input voltage and at the same time the balancing of the capacitor voltages. This control also reduces the computational complexity. For the purpose of close loop vector control, a software based cost effective resolver to digital converter RDC-less estimation is implemented to calculate the speed and position. The proposed drive is simulated in the MATLAB/SIMULINK environment and an experimental investigation using dSPACE DS1104 validates the proposed drive system at different operating condition.

Sensor Fault Detection, Localization, and System Reconfiguration with a Sliding Mode Observer and Adaptive Threshold of PMSM

  • Abderrezak, Aibeche;Madjid, Kidouche
    • Journal of Power Electronics
    • /
    • v.16 no.3
    • /
    • pp.1012-1024
    • /
    • 2016
  • This study deals with an on-line software fault detection, localization, and system reconfiguration method for electrical system drives composed of three-phase AC/DC/AC converters and three-phase permanent magnet synchronous machine (PMSM) drives. Current sensor failure (outage), speed/position sensor loss (disconnection), and damaged DC-link voltage sensor are considered faults. The occurrence of these faults in PMSM drive systems degrades system performance and affects the safety, maintenance, and service continuity of the electrical system drives. The proposed method is based on the monitoring signals of "abc" currents, DC-link voltage, and rotor speed/position using a measurement chain. The listed signals are analyzed and evaluated with the generated residuals and threshold values obtained from a Sliding Mode Current-Speed-DC-link Voltage Observer (SMCSVO) to acquire an on-line fault decision. The novelty of the method is the faults diagnosis algorithm that combines the use of SMCSVO and adaptive thresholds; thus, the number of false alarms is reduced, and the reliability and robustness of the fault detection system are guaranteed. Furthermore, the proposed algorithm's performance is experimentally analyzed and tested in real time using a dSPACE DS 1104 digital signal processor board.

Speed and Current Sensor Fault Detection and Isolation Based on Adaptive Observers for IM Drives

  • Yu, Yong;Wang, Ziyuan;Xu, Dianguo;Zhou, Tao;Xu, Rong
    • Journal of Power Electronics
    • /
    • v.14 no.5
    • /
    • pp.967-979
    • /
    • 2014
  • This paper focuses on speed and current sensor fault detection and isolation (FDI) for induction motor (IM) drives. A new, accurate and high-efficiency FDI approach is proposed so that a system can continue operating with good performance even in the presence of speed sensor faults, current sensor faults or both. The proposed three paralleled adaptive observers are capable of current sensor fault detection and localization. By using observers, the rotor flux and rotor speed can be estimated which allows the system to run under the speed sensorless vector control mode when a speed sensor fault occurs. In order to detect speed sensor faults, a threshold-based scheme is proposed. To verify the feasibility and effectiveness of the proposed FDI strategy, experiments are carried out under different conditions based on a dSPACE DS1104 induction motor drive platform.

Type-2 Fuzzy Logic Predictive Control of a Grid Connected Wind Power Systems with Integrated Active Power Filter Capabilities

  • Hamouda, Noureddine;Benalla, Hocine;Hemsas, Kameleddine;Babes, Badreddine;Petzoldt, Jurgen;Ellinger, Thomas;Hamouda, Cherif
    • Journal of Power Electronics
    • /
    • v.17 no.6
    • /
    • pp.1587-1599
    • /
    • 2017
  • This paper proposes a real-time implementation of an optimal operation of a double stage grid connected wind power system incorporating an active power filter (APF). The system is used to supply the nonlinear loads with harmonics and reactive power compensation. On the generator side, a new adaptive neuro fuzzy inference system (ANFIS) based maximum power point tracking (MPPT) control is proposed to track the maximum wind power point regardless of wind speed fluctuations. Whereas on the grid side, a modified predictive current control (PCC) algorithm is used to control the APF, and allow to ensure both compensating harmonic currents and injecting the generated power into the grid. Also a type 2 fuzzy logic controller is used to control the DC-link capacitor in order to improve the dynamic response of the APF, and to ensure a well-smoothed DC-Link capacitor voltage. The gained benefits from these proposed control algorithms are the main contribution in this work. The proposed control scheme is implemented on a small-scale wind energy conversion system (WECS) controlled by a dSPACE 1104 card. Experimental results show that the proposed T2FLC maintains the DC-Link capacitor voltage within the limit for injecting the power into the grid. In addition, the PCC of the APF guarantees a flexible settlement of real power exchanges from the WECS to the grid with a high power factor operation.