• Title/Summary/Keyword: dCAPS marker

Search Result 6, Processing Time 0.023 seconds

A Gene-based dCAPS Marker for Selecting old-gold-crimson (ogc) Fruit Color Mutation in Tomato (토마토 과색 돌연변이 유전자(old-gold-crimson) 선발을 위한 dCAPS 분자표지 개발)

  • Park, Young-Hoon;Lee, Yong-Jae;Kang, Jum-Soon;Choi, Young-Whan;Son, Beung-Gu
    • Journal of Life Science
    • /
    • v.19 no.1
    • /
    • pp.152-155
    • /
    • 2009
  • The old-gold-crimson ($og^c$) fruit color mutation produces deep red tomato fruit with high lycopene content. age is a null mutation allele of lycopene-${\beta}$-cyclase (Crt-b) gene (B locus) that converts lycopene to ${\beta}$-carotene in the cartenoid biosynthesis pathway in tomato. Breeding of high lycopene tomato cultivars can be accelerated by marker-assisted selection (MAS) for introgression of $og^c$ allele by using a gene-based DNA marker. In order to develop a marker, single nucleotide deletion of adenine(A) with. in a poly-A repeat that has been known to be responsible for frame-shift mutation of $og^c$ was confirmed by resequencing mutant allele and wild-type allele at B locus of several tomato lines. For allele discrimination and detection of $og^c$, derived CAPS (dCAPS) approach was used by designing a primer that artificially introduced restriction enzyme recognition site of Hin fI in PCR products from $og^c$ allele. This dCAPS marker is co-dominant gene-based PCR marker that can be efficiently used for MAS breeding program aiming the development of high lycopene tomato.

Validity Test for Molecular Markers Associated with Resistance to Phytophthora Root Rot in Chili Pepper (Capsicum annuum L.) (고추의 역병 저항성과 연관된 분자표지의 효용성 검정)

  • Lee, Won-Phil;Lee, Jun-Dae;Han, Jung-Heon;Kang, Byoung-Cheorl;Yoon, Jae-Bok
    • Horticultural Science & Technology
    • /
    • v.30 no.1
    • /
    • pp.64-72
    • /
    • 2012
  • Phytophthora root rot has been causing a serious yield loss in pepper production. Since 2004, the year in which commercial cultivars resistant to the disease were firstly commercialized, it has been necessary to introduce the resistance into domestic pepper cultivars for dried red pepper. Therefore, developing molecular markers linked to the resistance is required for an accurate selection of resistant plants and increasing breeding efficiency. Until now, several markers associated with the major dominant gene resistant to Phytophthora root rot have been reported but they have some serious limitations for their usage. In this study, we aimed to develop molecular markers linked to the major dominant gene that can be used for almost of all genetic resources resistant to Phytophthora root rot. Two segregating $F_2$ populations derived from a 'Subicho' ${\times}$ 'CM334' combination and a commercial cultivar 'Dokyacheongcheong' were used to develop molecular markers associated with the resistance. After screening 1,024 AFLP primer combinations with bulked segregant analysis, three AFLP (AFLP1, AFLP2, and AFLP3) markers were identified and converted into three CAPS markers (M1-CAPS, M2-CAPS, and M3-CAPS), respectively. Among them, M3-CAPS marker was further studied in ten resistants, fourteen susceptibles, five hybrids and 53 commercial cultivars. As a result, M3-CAPS marker was more fitted to identify Phytophthora resistance than previously reported P5-SNAP and Phyto5.2-SCAR markers. The result indicated that the M3-CAPS marker will be useful for resistance breeding to Phytophthora root rot in chili pepper.

Development of molecular marker for species authentication of Dendranthema indicum (L.) Des Moul. and D. boreale (Makino) Ling ex Kitam. (감국(Dendranthema indicum (L.) Des Moul.) 및 산국(D. boreale (Makino) Ling ex Kitam.)의 종판별 분자마커 개발)

  • Byeon, Jihui
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2018.10a
    • /
    • pp.66-66
    • /
    • 2018
  • 국화과(Compositae) 다년생 초본인 산국속(Dendranthema)은 국내 약 13여종이 자생하는 것으로 알려져 있으며, 이 중 감국(D. indicum (L.) Des Moul.)과 산국(D. boreale (Makino) Ling ex Kitam.), 구절초(D. zawadskii var. latilobum (Maxim.) Kitam.)가 주로 차 또는 한약재 등의 원료로 이용되고 있다. 차로 이용되는 꽃은 산국이 감국에 비해 상대적으로 작아서 구분이 가능하지만 시중에는 건조된 형태로 가공 유통되므로 육안으로 구분이 쉽지 않고, 산국 유래 제품들은 국내에서 감국 또는 국화로 혼용해서 표기되어 유통되고 있어 그 기원을 명확히 정립할 필요가 있다. 이에 본 연구는 감국과 산국의 분자유전학적 판별을 위해 DNA 바코드 후보 유전자를 활용하여 염기서열분석으로 확보된 SNP 및 InDel 정보를 바탕으로 CAPS 마커를 개발하고자 수행되었다. 감국과 산국 모두 trnL-trnF intergenic spacer 구간에서 약 1kb의 PCR 산물이 확인되었고, 이들 염기서열에서 분석한 2 SNP 및 3 InDel을 대상으로 CAPS 마커 개발을 위한 제한효소 사이트를 탐색하였다. Gap을 포함한 774bp (감국/산국=A/G) 위치의 SNP에서 BstUI(GC^GC)처리로 CAPS 마커로 전환 가능함이 확인되었고, 이에 감국과 산국의 PCR 산물에 제한효소를 처리한 결과, 제한효소 인식 사이트가 존재하는 산국에서 두 개의 DNA 단편이 확인되었다. 위 결과는 다양한 형태로 가공 유통되는 감국과 산국의 판별을 위한 마커로 활용될 수 있으며, 본 연구에 활용된 기술은 추후 건강기능식품 개발을 위한 원료표준화 확립 연구에 유용할 것으로 판단된다.

  • PDF

Development of Functional Markers for Detection of Inactive DFR-A Alleles Responsible for Failure of Anthocyanin Production in Onions (Allium cepa L.)

  • Park, Jaehyuk;Cho, Dong Youn;Moon, Jin Seong;Yoon, Moo-Kyoung;Kim, Sunggil
    • Horticultural Science & Technology
    • /
    • v.31 no.1
    • /
    • pp.72-79
    • /
    • 2013
  • Inactivation of the gene coding for dihydroflavonol 4-reductase (DFR) is responsible for the color difference between red and yellow onions (Allium cepa L.). Two inactive DFR-A alleles, DFR-$A^{PS}$ and DFR-$A^{DEL}$, were identified in our previous study. A functional marker was developed on the basis of the premature stop codon that inactivated the DFR-$A^{PS}$ allele. A derived cleaved amplified polymorphic sequences (dCAPS) primer was designed to detect the single nucleotide polymorphism, an A/T transition, which produced the premature stop codon. Digested PCR products clearly distinguished the homozygous and heterozygous red $F_2$ individuals. Meanwhile, to develop a molecular marker for detection of the DFR-$A^{DEL}$ allele in which entire DFR-A gene was deleted, genome walking was performed and approximately 3 kb 5' and 3' flanking sequences of the DFR-$A^R$ coding region were obtained. PCR amplification using multiple primers binding to the extended flanking regions showed that more of the extended region of the DFR-A gene was deleted in the DFR-$A^{DEL}$ allele. A dominant simple PCR marker was developed to identify the DFR-$A^{DEL}$ allele using the dissimilar 3' flanking sequences of the DFR-A gene and homologous DFR-B pseudogene. Distribution of the DFR-$A^{PS}$ and DFR-$A^{DEL}$ alleles in yellow onion cultivars bred in Korea and Japan was surveyed using molecular makers developed in this study. Results showed predominant existence of the DFR-$A^{PS}$ allele in yellow onion cultivars.

Evaluation of DNA Markers for Fruit-related Traits and Genetic Relationships Based on Simple Sequence Repeat in Watermelon Accessions

  • Jin, Bingkui;Park, Girim;Choi, Youngmi;Nho, Jaejong;Son, Beunggu;Park, Younghoon
    • Horticultural Science & Technology
    • /
    • v.35 no.1
    • /
    • pp.108-120
    • /
    • 2017
  • Modern watermelon cultivars (Citrullus lanatus [Thunb.] Matsum.& Nakai var. lanatus) have fruits with diverse phenotypes, including fruit shape, rind patterns, and flesh color. Molecular markers enable efficient selection of plants harboring desirable phenotypes. In the present study, publicly available DNA markers tightly linked to fruit shape, rind stripe pattern, and flesh color were evaluated using 85 watermelon accessions with diverse fruit phenotypes. For fruit shape, the dCAPS SUN - Cla011257 marker revealed an 81% of marker - trait match for accessions with elongated or round fruits. For rind stripe pattern, the SCAR wsb6-11marker was effective for selecting Jubilee-type rind pattern from other rind patterns. For flesh color, the Clcyb.600 and Lcyb markers derived from a mutation in the Lycopene ${\beta}$ - cyclase (Lcyb) gene, were effective at selecting red or yellow flesh. Forty-eight accessions possessing diverse fruit - related traits were selected as a reference array and their genetic relationships assessed using 16 SSR markers. At a coefficient of 0.11, the 48 accessions grouped into two major clades: Clade I and Clade II. Clade I subdivided further into subclades I - 1 and I - 2 at a coefficient of 0.39. All accessions with colored flesh were classified into Clade I, whereas those with white - flesh were classified into Clade II. Differences in fruit traits between subclades I - 1 and I - 2 were observed for rind pattern and fruit color; a majority of the accessions with Crimson-type striped or non-striped rind were grouped together in subclade I - 1, while most accessions in subclade I - 2 had a Jubilee - type rind stripe pattern. These results imply that reference array watermelon accessions possess distinguishable genetic structure based on rind stripe pattern. However, no significant grouping pattern was observed based on other fruit-related traits.

A Set of Allele-specific Markers Linked to L Locus Resistant to Tobamovirus in Capsicum spp. (고추의 Tobamovirus 저항성 L 유전자좌와 연관된 대립유전자 특이적인 마커 세트)

  • Lee, Jun-Dae;Han, Jung-Heon;Yoon, Jae-Bok
    • Horticultural Science & Technology
    • /
    • v.30 no.3
    • /
    • pp.286-293
    • /
    • 2012
  • The resistance to Tobamovirus in Capsicum spp. has been known to be controlled by five different alleles ($L^0$, $L^1$, $L^2$, $L^3$, and $L^4$) of L locus on the telomere of long arm of pepper chromosome 11. To develop a set of molecular markers differentiating all the alleles of L locus, we used five pepper differential hosts including Capsicum annuum Early California Wonder (ECW, $L^0L^0$), C. annuum Tisana ($L^1L^1$), C. annuum Criollo de Morelos 334 (CM334, $L^2L^2$), Capsicum chinense PI 159236 ($L^3L^3$), and Capsicum chacoense PI 260429 ($L^4L^4$). Developing a series of CAPS or SCAR markers specifically linked to the alleles was allowed by the sequence comparison of PCR amplicons of the $L^3$-linked markers (189D23M, A339, and 253A1R) and BAC sequences (FJ597539 and FJ597541) in the pepper differentials. Genotypes deduced by these markers in 48 out of 53 $F_1$ hybrids of commercial pepper varieties were consistent with their phenotypes by bioassay using Tobamovirus pathotypes ($P_0$, $P_1$, and $P_{1,2$). Consequently, these markers can be useful to differentiate L alleles and for breeding Tobamovirus resistance in pepper with marker-assisted selection.