• Title/Summary/Keyword: dB difference

Search Result 1,877, Processing Time 0.033 seconds

The Design and fabrication of Multi Channel Receiver for Radar System (레이더용 다중채널 수신기 설계 및 제작에 관한 연구)

  • Lee, Ki-Hong;Kim, Wan-Sik;Kim, Gye-Kuk
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.10
    • /
    • pp.131-136
    • /
    • 2011
  • In this paper, we fabricate multi channel receiver for radar system. This receiver at X-band can be received 8 signal of an identical characteristic, dynamic range has more than 80[dB]. To process direct received signals, this system has the built-in two digital de-modulators which offer the minimum loss on the receiving signal path and has high stability by adding Built-In Test. The gain, noise figure, difference of amplitude and phase on the signal path is respectively 20${\pm}$2[dB], 19[dB], ${\pm}$2[dB], $10^{\circ}$ and below.

The Design of Multi Channel Receiver for Radar Systems (레이더용 다중채널수신기 설계)

  • Lee, Ki-Hong;Kim, Wan-Sik;Kim, Gye-Kuk
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2010.07a
    • /
    • pp.203-207
    • /
    • 2010
  • In this paper, The design and implementation of Multi Channel Receiver is described in this paper. This Receiver system operates at X-band with processing received signal, more than 80[dB] dynamic range and wide-band signals at the same time. To process direct received signals, this system has the built-in Digital De-modulators which offer the minimum loss on the receiving signal pass and has high stability by adding Built-In Test (BIT). The performance of Multi Receiver is the following. The gain, noise figure, difference of amplitude and phase on the signal pass is respectively $14{\pm}2[dB]$, 19[dB], ${\pm}2[dB]$, and $10^{\circ}$ below.

  • PDF

Evaluation of Car Interior Noise by Using EEG (뇌파를 이용한 적정 자동차 내부소음의 평가)

  • 김정룡;박창순
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.24 no.65
    • /
    • pp.65-73
    • /
    • 2001
  • In this study, psychophysiological stress was quantitatively evaluated at various car interior noise levels by using Electroencephalogram(EEG). An experiment was performed to investigate the most comfortable range of noise level during simulated driving condition. Twelve healthy volunteers participated in the experiment. They were asked to operate the driving simulator while six levels of interior noise were given, such as 45dB(A), 50dB(A), 55dB(A), 60dB(A), 70dB(A), 80dB(A), and maximal subjective noise level. EEG signals were recorded for 60 seconds in each noise level. The power spectral analysis was performed to analyze EEG signal. At the same time, psychological stress was also measured subjectively by using a magnitude estimation method. The results showed that subjective stress and EEG spectrum indicated a statistically significant difference between noise levels. In particular, high level noise produced an increase in beta power at temporal(T3, T4) areas. It was also found that beta activity was highly correlated with subjective perception of discomfort, and subjects responded to car interior noise as arousing or negative stimuli. Moreover, beta power remained stable above 70dB(A), whereas subjective discomfort continued to increase even above 70dB(A) We concluded that brain waves could provide psychophysiological information of drivers emotional reaction to car interior noise. Thus, EEG parameters could be a new measure to determine optimal noise level in ergonomic workplace design after further verification in various experimental conditions.

  • PDF

Design BALUN for 900MHz ZigBee System Application based on LTCC (LTCC 을 이용한 900MHz ZigBee System용 BALUN 설계)

  • Lee, Joong-Keun;Yoo, Chan-Sei;Park, Sung-Dae;Won, Kwang-Ho;Lee, Woo-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.244-245
    • /
    • 2005
  • This paper presents the performance of BALUN embedded in the LTCC substrate of ZigBee system which is one of the kind of wireless communication. The BALUN is used to make two signal which have 180$^{\circ}$ phase difference and 3dB power from one input signal. Therefore, this is 3-port network circuit. At the center frequency(915MHz), insertion losses were 3.1dB and 3.4dB, respectively. Also, the phase difference was 182$^{\circ}$. Its size is 2.1$\times$3.6mm. The Used materials were dupont9599 LTCC ceramic and daejuo086 Ag.

  • PDF

Broadband U-Shaped RFID Tag Antenna with Near-Isotropic Characteristic (광대역에서 일정한 준 등방성 특성을 가지는 U-형태의 RFID 태그 안테나)

  • Lee, Sang-Woon;Jung, Hak-Joo;Choo, Ho-Sung;Park, Ik-Mo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.5
    • /
    • pp.480-492
    • /
    • 2009
  • In this paper, we proposed a broadband U-shaped RFID tag antenna with near-isotropic characteristic at UHF band. The proposed tag antenna is composed of the U-shaped half wavelength dipole and a rectangular shaped feed. The rectangular shaped feed that is located inside U-shaped dipole is connected for conjugate impedance matching with the commercial tag chip. A better constant gain deviation characteristic in the operating frequency band is achieved by inserting a rectangular slit in the lower center of the U-shaped antenna body. On the condition of VSWR<2, the tag antenna had the measured bandwidth of 10.36%, from 860.5 to 954.5 MHz, and 9.84%, from 864.5 to 954 MHz, for antenna without slit and with slit, respectively. On the condition of VSWR<5.8, the tag antennas had the measured bandwidth of 15.78%, from 835.5 to 979.5 MHz, and 15.89%, from 837 to 981.5 MHz, for antenna without slit and with slit, respectively. The difference between the maximum and minimum gain deviations of tag antenna without slit in the operating frequency band is 0.53 dB since the maximum and minimum gain deviations are 3.86 dB and 3.33 dB, respectively. Whereas the difference between the maximum and minimum gain deviations of tag antenna with slit in the operating frequency is 0.06 dB since the maximum and minimum gain deviations are 3.60 dB and 3.54 dB, respectively.

A Comparison of Noise Level by Noise Measuring Methods (소음측정방법에 따른 평가소음도 비교)

  • Shim, Chur Goo;Roh, Jae hoon;Park, Jung Gyun
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.5 no.2
    • /
    • pp.128-136
    • /
    • 1995
  • The purpose of this study is to evaluate the difference of noise level according to noise measuring methods in the noisy working environments. Sound pressure level(SPL), equivalence sound level(Leq) and personal noise exposure dose(Dose) in the fifty-nine unit workplaces of the twenty-eight industries were measured and relating factors which were affected noise level were investigated. The results were as follows ; 1. The noise levels were $88.70{\pm}5.68dB(A)$ by SPL, $89.07{\pm}5.41dB(A)$ by Leq and $89.07{\pm}5.69$ by Dose. The differences of noise levels by three measuring methods were statistically significant(P<0.001) by repeated measure ANOV A. 2. Comparing with noise levels by general classes of noise exposure, noise levels of continuous noise were $89.14{\pm}5.19dB(A)$ by SPL, $89.45{\pm}4.65dB(A)$ by Leq and $90.04{\pm}5.09$ by Dose. Noise levels of intermittent noise were $87.90{\pm}6.52dB(A)$ by SPL, $88.40{\pm}6.63dB(A)$ by Leq and $90.10{\pm}6.80$ by Dose. The differences noise level of noise measuring methods by general classese of noise exposure were statistically not significant by repeated measure ANOV A. 3. Interaction between general classese of noise exposure and noise measuring methods for noise level was not statistically significant by repeated measure ANOVA. And the noise level by noise measuring methods were statistically significant by repeated measure ANOV A(P<.001) 4. Comparing with noise levels by unit workplace size, noise levels of large unit workplace were $90.73{\pm}5.87dB(A)$ by SPL, $91.32{\pm}5.50dB(A)$ by Leq and $91.82{\pm}6.06$ by Dose and noise levels of middle unit workplace were $88.31{\pm}5.26dB(A)$ by SPL, $88.41{\pm}4.83dB(A)$ by Leq and $89.69{\pm}5.05$ by Dose. And noise levels of small unit workplace were $94.89{\pm}4.10dB(A)$ by SPL, $85.35{\pm}4.11dB(A)$ by Leq and $86.87{\pm}4.98$ by Dose. The noise level differences of noise measuring methods by unit workplace size were statistically significant by repeated measure ANOV A(P<.05). 5. The noise level by noise measuring methods were statistically significant by repeated measure ANOV A(P<.001). But Interaction between workplace size and noise level measuring methods for noise level was not statistically significant by repeated measure ANOVA. According to the above results, there was a difference of the noise level among the three measuring methods. Therefore we must use the personal noise exposure dose using by noise dose meter, possible, to prvent occupational hearing loss in noisy working environment.

  • PDF

Analysis of Noise Characteristics of Double and Single-layered Porous Pavement with CPX Method -National Route 1, Sejong-Si Section- (CPX방법에 의한 복층 및 단층 다공성포장의 소음특성 분석 -국도 1호선 세종시 구간-)

  • Yoo, In-Kyoon;Lee, Su-Hyung;Han, Dae-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.10
    • /
    • pp.55-63
    • /
    • 2020
  • Road traffic noise is a major complaint. Porous pavement (PP) has been proposed as an effective method for reducing road traffic noise, but it has not been applied much due to the lack of quantitative evaluation. In this study, the noise reduction of single-layer porous pavement (SLPP) and double-layer porous pavement (DLPP) was evaluated. The noise was measured using the CPX method, and the driving speed was measured every 10km/h from 50km/h to 80km/h. The differences in noise level between the two PPs were statistically significant. The driving speed had no significant effect on the difference in noise between the two PPs. The DLPP showed a 6.6dB(A) reduction in average and a 6.3dB(A) reduction at the 95% confidence level compared to the SLPP. Reducing noise by 5dB(A) is equivalent to reducing traffic to 1/3 or lowering the vehicle's speed to 1/2. Sensitively, it is possible to recognize a 3dB(A) and 5dB(A) difference. The DLPP and SLPP were very effective in reducing traffic noise.

Electrochemical and Raman Spectroscopy Analysis for D- and L-Tryptophan-b-Cyclodextrin Inclusion Complexes

  • Jeong, Yu-Ra;Lee, So-Ra;Son, Pyeong-Soo;Choi, Seong-Ho
    • Journal of the Korean Applied Science and Technology
    • /
    • v.32 no.3
    • /
    • pp.451-460
    • /
    • 2015
  • An enantioselective recognition of D- and L-tryptophan (Trp)-b-cyclodextrin (CD) inclusion complex was performed using electrochemical and FT-Raman spectroscopic analysis. From the electrochemical analysis, the selectivity coefficient ($K_{DL}$) of b-CD inclusion complexes was found higher than that of the D- and L-Trp in phosphate buffered saline (PBS, pH=7.0) solution. The percentage of enantioselectivity ($I_{%{ee}}$) for peak current of D-Trp-b-CD inclusion complexes was observed higher than that of L-Trp-b-CD inclusion complexes in PBS solution. From Raman spectroscopy, chemical shift difference (D, $cm^{-1}$) for the C=C stretch, ring vibration, and ring breathing of D-Try-b-CD inclusion complex were observed higher than that of L-Trp-b-CD inclusion complex. The electrochemical and Raman spectroscopic analyses were found very useful for chiral detection of racemic amino acid in the presence of b-CD.

Comparison of Impact Sound Insulation Performances of Apartment Floors Against Heavy-weight Impact Sources via Field Measurement Data (공동주택 현장 측정자료를 활용한 중량충격원의 바닥충격음 차단성능 비교)

  • Yun, Chang-Yeon;Yeon, Jun-Oh;Kim, Myung-Jun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.8
    • /
    • pp.651-658
    • /
    • 2014
  • Notification 2013-611 of MOLIT has come into effect. It relates primarily to new standard impact source. In this study, an in-depth experimental analysis of the difference between a bang machine and an impact ball was performed via field testing of shear wall and flat plate structure at 51 sites. This paper focuses on the difference in single number quantities between a bang machine and an impact ball. At wall thicknesses of 180 and 210 mm in shear wall structure, the single number quantities exhibited differences of 3.1 and 4.5 dB, respectively, and at thicknesses exceeding 250 mm in flat plate structure, the difference was constant at 4.6 dB. With regard to flat plate structures, the single-index difference increased up to 11 dB as the thickness of the floor slab increased. In general, the highest level of contribution for the bang machine was 63 Hz, irrespective of thickness determining bandwidth. The highest level for the impact ball were 63 Hz and 125 Hz. In future research, when reviewing additional field performance measurement data, it will be necessary to consider a detailed examination instead of the current method of uniformly adding 3 dB for all thicknesses and types of structures.

Design of VHF-Band Wideband 4-Way 90° Power Divider (VHF 대역용 광대역 4분기 90° 전력분배기 설계)

  • Lee, Kyu-Song;Oh, Seung-Hyeub
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.6
    • /
    • pp.516-525
    • /
    • 2009
  • This paper described the design and fabrication of broadband 4-way $90^{\circ}$ power divider which has a $90^{\circ}$ phase difference between output ports in 20${\sim}$100 MHz VHF-band. A 4-way $90^{\circ}$ power divider was designed using 4-way in-phase power divider which consisted of three 2-way in-phase power dividers and two second-order all pass filters which gives $90^{\circ}$ phase difference between output ports. The measured insertion loss was less then 6.6 dB, return loss and isolation were better than 19 dB, and phase error between $90^{\circ}$ phase difference outputs was less than ${\pm}$1$^{\circ}$.