• Title/Summary/Keyword: dB(V)

Search Result 2,210, Processing Time 0.03 seconds

On the vibration influence to the running power plant facilities when the foundation excavated of the cautious blasting works. (노천굴착에서 발파진동의 크기를 감량 시키기 위한 정밀파실험식)

  • Huh Ginn
    • Explosives and Blasting
    • /
    • v.9 no.1
    • /
    • pp.3-13
    • /
    • 1991
  • The cautious blasting works had been used with emulsion explosion electric M/S delay caps. Drill depth was from 3m to 6m with Crawler Drill ${\phi}70mm$ on the calcalious sand stone (soft -modelate -semi hard Rock). The total numbers of test blast were 88. Scale distance were induced 15.52-60.32. It was applied to propagation Law in blasting vibration as follows. Propagtion Law in Blasting Vibration $V=K(\frac{D}{W^b})^n$ were V : Peak partical velocity(cm/sec) D : Distance between explosion and recording sites(m) W : Maximum charge per delay-period of eight milliseconds or more (kg) K : Ground transmission constant, empirically determind on the Rocks, Explosive and drilling pattern ets. b : Charge exponents n : Reduced exponents where the quantity $\frac{D}{W^b}$ is known as the scale distance. Above equation is worked by the U.S Bureau of Mines to determine peak particle velocity. The propagation Law can be catagorized in three groups. Cubic root Scaling charge per delay Square root Scaling of charge per delay Site-specific Scaling of charge Per delay Plots of peak particle velocity versus distoance were made on log-log coordinates. The data are grouped by test and P.P.V. The linear grouping of the data permits their representation by an equation of the form ; $V=K(\frac{D}{W^{\frac{1}{3}})^{-n}$ The value of K(41 or 124) and n(1.41 or 1.66) were determined for each set of data by the method of least squores. Statistical tests showed that a common slope, n, could be used for all data of a given components. Charge and reduction exponents carried out by multiple regressional analysis. It's divided into under loom over loom distance because the frequency is verified by the distance from blast site. Empirical equation of cautious blasting vibration is as follows. Over 30m ------- under l00m ${\cdots\cdots\cdots}{\;}41(D/sqrt[2]{W})^{-1.41}{\;}{\cdots\cdots\cdots\cdots\cdots}{\;}A$ Over 100m ${\cdots\cdots\cdots\cdots\cdots}{\;}121(D/sqrt[3]{W})^{-1.66}{\;}{\cdots\cdots\cdots\cdots\cdots}{\;}B$ where ; V is peak particle velocity In cm / sec D is distance in m and W, maximLlm charge weight per day in kg K value on the above equation has to be more specified for further understaring about the effect of explosives, Rock strength. And Drilling pattern on the vibration levels, it is necessary to carry out more tests.

  • PDF

Electrical Properties of PCCYA-doped ZnO-based Varistors

  • Nahm, Choon-Woo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.9 no.3
    • /
    • pp.96-100
    • /
    • 2008
  • The microstructure, voltage-current, and capacitance-voltage relations ofP CCYA doped ZnO-based varistors were investigated for different amounts of $Al_2O_3$. As the $Al_2O_3$ amount increased, the average grain size (d) increased from d=4.3 to $d=5.5{\mu}m$ and the sintered density $({\rho})$ increased from ${\rho}=5.63$ to ${\rho}=5.67g/cm^3$. As the $Al_2O_3$ amount increased, the breakdown voltage $(V_B)$ increased from $V_B=633$ to $V_B=71$ V/mm and the non-ohmic coefficient $({\alpha})$ increased from ${\alpha}=47$ to ${\alpha}=4$. $Al_2O_3$ served as a donor due to the donor density $(N_d)$, which increases in the range of $N_d=0.77-1.85{\times}10^{18}/cm^3$ with increasing amount of $Al_2O_3$.

dB-Linear CMOS Variable Gain Amplifier for GPS Receiver (dB-선형적 특성을 가진 GPS 수신기를 위한 CMOS 가변 이득 증폭기)

  • Jo, Jun-Gi;Yoo, Chang-Sik
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.48 no.7
    • /
    • pp.23-29
    • /
    • 2011
  • A dB-linearity improved variable gain amplifier (VGA) for GPS receiver is presented. The Proposed dB-linear current generator has improved dB-linearity error of ${\pm}0.15$dB. The VGA for GPS is designed using proposed dB-linear current generator and composed of 3 stage amplifiers. The IF frequency is assumed as 4MHz and the linearity requirement of the VGA for GPS receiver is defined as 24dBm of IIP3 using cascaded IIP3 equation and the VGA satisfies 24dBm when minimum gain mode. The DC-offset voltage is eliminated using DC-offset cancelation loop. The gain range is from -8dB to 52dB and the dB-linearity error satisfies ${\pm}0.2$dB. The 3-dB frequency has range of 35MHz~106MHz for the gain range. The VGA is designed using 0.18${\mu}m$ CMOS process. The power consumption is 3mW with 1.8V supply voltage.

Electro-optic Electric Field Sensor Utilizing Ti:LiNbO3 Symmetric Mach-Zehnder Interferometers

  • Jung, Hong-Sik
    • Journal of the Optical Society of Korea
    • /
    • v.16 no.1
    • /
    • pp.47-52
    • /
    • 2012
  • The use of a $Ti:LiNbO_3$ symmetric Mach-Zehnder interferometric intensity modulator with a push-pull lumped electrode and a plate-type probe antenna to measure an electric field strength is described. The modulator has a small device size of $46{\times}7{\times}1mm$ and operates at a wavelength of $1.3{\mu}m$. The output characteristic of the interferometer shows the modulation depth of 100% and 75%, and $V_{\pi}$ voltage of 6.6 V, and 6.6 V at the 200 Hz and 1 KHz, respectively. The minimum detectable electric field is ~1.84 V/m, ~3.28 V/m, and ~11.6 V/m, corresponding to a dynamic range of about ~22 dB, ~17 dB, and ~6 dB at frequencies of 500 KHz, 1 MHz and 5 MHz, respectively.

Development of V-band Wireless Transceiver using MMIC Modules (MMIC 모듈을 이용한 V-band 무선 송수신 시스템의 구축)

  • Lee, Sang-Jin;An, Dan;Lee, Mun-Kyo;Go, Du-Hyun;Jin, Jin-Man;Kim, Sung-Chan;Kim, Sam-Dong;Park, Hyun-Chang;Park, Hyung-Moo;Rhee, Jin-Koo
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.575-578
    • /
    • 2005
  • We report on a low-cost V-band wireless transceiver with no use of any local oscillator in the receiver block using a self-heterodyne architecture. V-band Microwave monolithic IC (MMIC) modules were developed to demonstrate the wireless transceiver using coplanar waveguide (CPW) and GaAs PHEMT technologies. The MMIC modules such as the MMIC low noise amplifier (LNA), medium power amplifier (MPA) and the up/down-mixer were installed in the transceiver system. To interface the MMIC chips with the component modules for the transceiver system, CPW-to-waveguide fin-line transition modules of WR-15 type were designed and fabricated. The fabricated LNA modules showed a $S_{21}$ gain of 8.4 dB and a noise figure of 5.6 dB at 58 GHz. The MPA modules exhibited a gain of 6.9 dB and a $P_1$ $_{dB}$ of 5.4 dBm at 58 GHz. The conversion losses of the up-mixer and the down-mixer module were 14.3 dB at a LO power of 15 dBm, and 19.7 dB at a LO power of 0 dBm, respectively. From the measurement of V-band wireless transceiver, a conversion gain of 0.2 dB and a P $_{1dB}$ of 5.2 dBm were obtained in the transmitter block. The receiver block showed a conversion gain of 2.1 dB and a P $_{1dB}$ of -18.6 dBm. The wireless transceiver system demonstrated a successful data transfer within a distance of 5 meters.

  • PDF

V-band Self-heterodyne Wireless Transceiver using MMIC Modules

  • An, Dan;Lee, Mun-Kyo;Lee, Sang-Jin;Ko, Du-Hyun;Jin, Jin-Man;Kim, Sung-Chan;Kim, Sam-Dong;Park, Hyun-Chang;Park, Hyung-Moo;Rhee, Jin-Koo
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.5 no.3
    • /
    • pp.210-219
    • /
    • 2005
  • We report on a low-cost V-band wireless transceiver with no use of any local oscillator in the receiver block using a self-heterodyne architecture. V-band millimeter-wave monolithic IC (MMIC) modules were developed to demonstrate the wireless transceiver using coplanar waveguide (CPW) and GaAs PHEMT technologies. The MMIC modules such as the MMIC low noise amplifier (LNA), medium power amplifier (MPA) and the up/down-mixer were installed in the transceiver system. To interface the MMIC chips with the component modules for the transceiver system, CPW-to-waveguide fin-line transition modules of WR-15 type were designed and fabricated. The fabricated LNA modules showed a $S_{21}$ gain of 8.4 dB and a noise figure of 5.6 dB at 58 GHz. The MPA modules exhibited a gain of 6.9 dB and a $P_{1dB}$ of 5.4 dBm at 58 GHz. The conversion losses of the up-mixer and the down-mixer module were 14.3 dB at a LO power of 15 dBm, and 19.7 dB at a LO power of 0 dBm, respectively. From the measurement of V-band wireless transceiver, a conversion gain of 0.2 dB and a $P_{1dB}$ of 5.2 dBm were obtained in the transmitter block. The receiver block showed a conversion gain of 2.1 dB and a $P_{1dB}$ of -18.6 dBm. The wireless transceiver system demonstrated a successful data transfer within a distance of 5 meters.

Study on the Development of Linearity of Broad-Band SDLVA Using Clamping Op-Amp (Clamping Op-Amp를 이용한 광대역 로그 비디오 증폭기의 선형성 개선에 관한 연구)

  • Park, Jong-Sul;Kim, Jong-Geon;Kim, Jum-Sik
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.6
    • /
    • pp.641-647
    • /
    • 2011
  • This paper describes a design and fabrication of SDLVA. The SDLVA operates 0.5~2.0 GHz with -70~0 dBm dynamic range. The SDLVA is consisted of 5-stage RF block, 2-stage detector block and summation circuit using clamping op-amp to improve video linearity. The result of measure, SDLVA of RF path has over 73 dB small-signal gain and 10.1~12.2 dBm saturation power. The video path has 25 mV/ dB${\pm}$1.0 mV and under ${\pm}$1.5 dB video linearity.

A S/C/X-Band GaN Low Noise Amplifier MMIC (S/C/X-대역 GaN 저잡음 증폭기 MMIC)

  • Han, Jang-Hoon;Kim, Jeong-Geun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.5
    • /
    • pp.430-433
    • /
    • 2017
  • This paper presents a S/C/X-band LNA MMIC with resistive feedback structure in 0.25 um GaN HEMT process. The GaN devices have advantages as a high output power device having high breakdown voltage, energy band gap and stability at high temperature. Since the receiver using the GaN device with high linearity can be implemented without a limiter, the noise figure of the receiver can be improved and the size of receiver module can be reduced. The proposed GaN LNA MMIC based on 0.25 um GaN HEMT device is achieved the gain of > 15 dB, the noise figure of < 3 dB, the input return loss of > 13 dB, and the output return loss of > 8 dB in the S/C/X-band. The current consumption of GaN LNA MMIC is 70 mA with the drain voltage 20 V and the gate voltage -3 V.

MMIC Low Noise Amplifier Design for Millimeter-wave Application (밀리미터파 응용을 위한 MMIC 저잡음 증폭기 설계)

  • 장병준;염인복;이성팔
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.12 no.7
    • /
    • pp.1191-1198
    • /
    • 2001
  • MMIC low noise amplifiers for millimeter-wave application using 0.15 $\mu$m pHEMT have been presented in this paper. The design emphasis is on active device model and EM simulation. The deficiency of conventional device models is identified. A distributed device model has been adapted to circumvent the scaling problems and, thus, to predict small signal and noise parameters accurately. Two single-ended low noise amplifier are designed using distributed active device model for Q-band(40 ∼ 44 GHz) and V-band(58 ∼65 GHz) application. The Q-band amplifier achieved a average noise figure of 2.2 dB with 18.3 dB average gain. The V-band amplifier achieved a average noise figure of 2.9 dB with 14.7 dB average gain. The design technique and model employed provides good agreement between measured and predicted results. Compared with the published data, this work also represents state-of-the-art performance in terms of gain and noise figure.

  • PDF

Design of a 2.5V 2.4GHz Single-Ended CMOS Low Noise Amplifier (2.5V, 2.4GHz CMOS 저잡음 증폭기의 설계)

  • Hwang, Young-Sik;Jang, Dae-Seok;Jung, Woong
    • Proceedings of the IEEK Conference
    • /
    • 2000.06e
    • /
    • pp.191-194
    • /
    • 2000
  • A 2.4 GHz single ended two stage low noise amplifier(LNA) is designed for Bluetooth application. The circuit was implemented in a standard digital 0.25 $\mu\textrm{m}$ CMOS process with one poly and five metal layers. At 2.4 GHz, the LNA dissipates 34.5 mW from a 2.5V power supply voltage and provides 24.6 dB power gain, 2.85 dB minimum noise figure, -66.3 dB reverse isolation, and an output 1-dB compression level of 8.5 dBm.

  • PDF