• Title/Summary/Keyword: d-q 변환

Search Result 104, Processing Time 0.028 seconds

Characteristic Analysis of Single-phase Line-start Permanent Magnet Synchronous Motor Considering Iron Loss (철손을 고려한 단상 영구자석형 유도동기기의 특성해석)

  • Nam, Hyuk;Kang, Gyu-Hong;Hong, Jung-Pyo
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.5
    • /
    • pp.295-304
    • /
    • 2004
  • This paper deals with characteristic analysis method using d-q axis equivalent circuit considering iron loss in a single-phase line-start permanent magnet synchronous motor. The iron loss resistance to account for the iron loss is included in the equivalent circuit to improve the modeling accuracy. Furthermore, for the improved calculation of the iron loss, the iron loss is calculated from the magnetic flux density by 2-dimensional finite element method. The result is represented as the iron loss resistance and connected in parallel with the total induced voltage. Therefore, the currents can be expressed as the summation the output current with the current corresponding to the iron loss. Finally, the steady state characteristic analysis results are compared with the experimental results to verify this approach.

Characteristic Analysis of Permanent Magnet Assisted Synchronous Reluctance Motor for High Power Application (고출력 응용을 위한 영구자석 매입형 동기 릴럭턴스 전동기의 특성해석)

  • Jang Young-Jin;Kim Gi-Bok;Lee Jung-Ho;Kim Sang-Gil;Shin Heung-Kyo
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.10
    • /
    • pp.585-596
    • /
    • 2004
  • In this paper, finite element analysis for a PMASynRM is presented and the characteristic analysis of inductance and torque is performed under the effect of saturation. The focus of this paper is characteristic analysis of d and q-axis inductances and torque according to magnetizing quantity of interior permanent magnet for PMASynRM. The d and q-axis current component ratios, load angles of a PMASynRM are investigated quantitatively on the basis of the proposed analysis method and the experimental test. Comparisons are given with output characteristic curves of normal SynRM and those according to the load in PMASynRM, respectively And it is confirmed that the proposed model results in high output power performance.

Rotor Design of a Segmented Type Synchronous Reluctance Motor to Improve Torque and Power Factor (단편형 동기 릴럭턴스 전동기의 토크 및 열률 개선을 위한 회전자 설계)

  • Jang, Seok-Myeong;Park, Byeong-Im;Lee, Seong-Ho;Lee, Jung-Ho
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.50 no.6
    • /
    • pp.263-272
    • /
    • 2001
  • The paper presents the design of a segmented type synchronous reluctance motor(SynRM) to increase its torque and power factor. The main feature of a segmented type synchronous reluctance motor is the flux barrier. Thus, the design process to find optimum value of various geometric parameters including flux barrier will be explained. Optimum value of each parameter is found where the d, q inductance difference and saliency ratio are maximized because these inductance characteristics are related to torque and power factor. Finite Element Analysis will be used to simulate motor characteristics. Analysis results of redesigned SynRM show higher saliency ratio over 10 and improved value of maximum power factor.

  • PDF

Sensorless Control of BLDC Motor using d-q Synchronously Rotating Reference Frame Concept (d-q 동기좌표 변환 개념을 이용한 BLDC 전동기의 센서리스)

  • Moon, Jong-Joo;Heo, Hong-Jun;Kim, Jang-Mok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.3
    • /
    • pp.232-238
    • /
    • 2015
  • A sensorless control algorithm of brushless DC (BLDC) motors with a model current based on 120 degree conduction mode is proposed in this paper. The rotor speed and position can be estimated using the current model of BLDC motor, which is a modified version of the conventional current model of permanent magnet synchronous motor. The rotor speed and position can be obtained using the difference of the actual current and the model current. The position error caused by the parameter errors of the model current is compensated using a PI controller and the feedback loop of the real current. The validity of the proposed sensorless control algorithm is verified through simulation.

Starting Characteristic Analysis of Single-Phase Line-Start Permanent Magnet Synchronous Motor (단상 직립기동 영구자석 동기전동기의 기동특성 해석)

  • Gang, Gyu-Hong;Hong, Jeong-Pyo
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.50 no.12
    • /
    • pp.592-600
    • /
    • 2001
  • This Paper presents the transient analysis of the single-phase line-start permanent magnet synchronous motor. To analyse the starting characteristics, the dynamic equation which is combined electric dynamic equations with mechanical dynamic equation is used. The electric dynamics are derived from the d-q axis voltages of stator and rotor respectively. Especially, symmetrical components transformation is used to consider unbalanced magnetic field which is produced by single-phase input. Non-linear d-q axis inductances according to current amplitude and current phase angle are calculated by Finite Element Method and applied to lumped parameter circuit. The analysis methods are validated by comparing simulated and experimental results.

  • PDF

Speed Sensorless Torque Monitoring On CNC Lathe Using Internet (인터넷을 이용한 CNC 선반의 속도 센서리스 토크감시)

  • 홍익준;권원태
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.467-470
    • /
    • 2002
  • Internet provides the useful method to monitor the current states of the machine tool no matter where a personnel is monitoring them. In this paper, a monitoring method of the torque of the machine tool's spindle induction motor using internet is suggested. The torque of vector controlled induction motor is estimated without speed measuring sensor. Only stator currents are measured to estimate the magnetizing current which is used to calculate flux linkage, rotor velocity and motor torque. Graphical programming is used to implement the suggested algorithm, to monitor the torque of an induction motor in real time and to make the estimated torque monitored on client computers. To solve the fluctuation problem of estimated torque caused from instantly varying rotating speed of an induction motor, the rotating speed is reconstructed based on the measured current signals. Mechanical part of the machine tool is also reconstructed using the data obtained from preliminary experiments. Torque of the spindle induction motor is well monitored on the client computers with 3% error range under various cutting conditions.

  • PDF

Development of an Interior Permanent Magnet Synchronous Motor and Drive for 42V Electric Air-conditioner System in Vehicles (42V 전동식 에어컨 시스템용 영구자석 매입형 동기 전동기 및 드라이버 개발)

  • Lee ji-Young;Hong Jung-Pyo;Lee Geun-Ho
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.6
    • /
    • pp.269-277
    • /
    • 2005
  • In this paper, designs of an Interior Permanent Magnet Synchronous Motor (IPMSM) and its motor driver for 42V automotive air condition system are introduced. The characteristics of the IPMSM are predicted by using d-q equivalent circuit having the parameters, such as current phase angle, d-q axis inductances, core loss resistance, etc. The experimental and analysis results of the prototype are compared to show validity of the analysis method, and to give analyzed characteristics in detail. As the result, an improved IPMSM is designed to widen the operating speed limit of prototype; a cost effective AC drive are considered at the same time.

Robust Decoupling Digital Control of Three-Phase Inverter for UPS (3상 UPS용 인버터의 강인한 비간섭 디지털제어)

  • Park, Jee-Ho;Heo, Tae-Won;Shin, Dong-Ryul;Roh, Tae-Kyun;Woo, Jung-In
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.4
    • /
    • pp.246-255
    • /
    • 2000
  • This paper deals with a novel full digital control method of the three-phase PWM inverter for UPS. The voltage and current of output filter capacitor as state variables are the feedback control input. In addition, a double deadbeat control consisting of a d-q current minor loop and a d-q voltage major loop, both with precise decoupling, have been developed. The switching pulse width modulation based on SVM is adopted so that the capacitor current should be exactly equal to its reference current. In order to compensate the calculation time delay, the predictive control is achieved by the current·voltage observer. The load prediction is used to compensate the load disturbance by disturbance observer with deadbeat response. The experimental results show that the proposed system offers an output voltage with THD less than 2% at a full nonlinear load.

  • PDF

The Characteristics of Voltage Sag and a Study about Detection Algorithm Using the DQ Transformation (Voltage sag의 특성과 dq좌표변환을 이용한 검출법에 대한 연구)

  • Kim, Yong-Sang;Kim, Do-Hun;Yim, Sang-Wook;Lee, Kyo-Sung;Kim, Yang-Mo
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.1114-1116
    • /
    • 2003
  • Voltage sags are known as a serious problem causing mal-operation of equipment like computers, process controllers and adjustable-speed drives. In this paper, characterization of voltage sag and an overview of methods used in the mitigation of voltage sags are presented. Moreover a fast detection method for voltage disturbances is explored. The algorithm is based on the theory that allows a set of three-phase voltages be converted the d-q value. The utility input voltages are sensed and then converted to some quantities in the d-q transformation. And the difference between reference value and input value are showed that some disturbances happened in the system.

  • PDF

Development of Deep Learning Model for Fingerprint Identification at Digital Mobile Radio (무선 단말기 Fingerprint 식별을 위한 딥러닝 구조 개발)

  • Jung, Young-Giu;Shin, Hak-Chul;Nah, Sun-Phil
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.1
    • /
    • pp.7-13
    • /
    • 2022
  • Radio frequency fingerprinting refers to a methodology that extracts hardware-specific characteristics of a transmitter that are unintentionally embedded in a transmitted waveform. In this paper, we put forward a fingerprinting feature and deep learning structure that can identify the same type of Digital Mobile Radio(DMR) by inputting the in-phase(I) and quadrature(Q). We proposes using the magnitude in polar coordinates of I/Q as RF fingerprinting feature and a modified ResNet-1D structure that can identify them. Experimental results show that our proposed modified ResNet-1D structure can achieve recognition accuracy of 99.5% on 20 DMR.