• Title/Summary/Keyword: d-algebra

Search Result 228, Processing Time 0.02 seconds

STABILITY OF (α, β, γ)-DERIVATIONS ON LIE C*-ALGEBRA ASSOCIATED TO A PEXIDERIZED QUADRATIC TYPE FUNCTIONAL EQUATION

  • Eghbali, Nasrin;Hazrati, Somayeh
    • Communications of the Korean Mathematical Society
    • /
    • v.31 no.1
    • /
    • pp.101-113
    • /
    • 2016
  • In this article, we considered the stability of the following (${\alpha}$, ${\beta}$, ${\gamma}$)-derivation $${\alpha}D[x,y]={\beta}[D(x),y]+{\gamma}[x,D(y)]$$ and homomorphisms associated to the quadratic type functional equation $$f(kx+y)+f(kx+{\sigma}(y))=2kg(x)+2g(y),\;x,y{\in}A$$, where ${\sigma}$ is an involution of the Lie $C^*$-algebra A and k is a fixed positive integer. The Hyers-Ulam stability on unbounded domains is also studied. Applications of the results for the asymptotic behavior of the generalized quadratic functional equation are provided.

REDUCING SUBSPACES OF A CLASS OF MULTIPLICATION OPERATORS

  • Liu, Bin;Shi, Yanyue
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.4
    • /
    • pp.1443-1455
    • /
    • 2017
  • Let $M_{z^N}(N{\in}{\mathbb{Z}}^d_+)$ be a bounded multiplication operator on a class of Hilbert spaces with orthogonal basis $\{z^n:n{\in}{\mathbb{Z}}^d_+\}$. In this paper, we prove that each reducing subspace of $M_{z^N}$ is the direct sum of some minimal reducing subspaces. For the case that d = 2, we find all the minimal reducing subspaces of $M_{z^N}$ ($N=(N_1,N_2)$, $N_1{\neq}N_2$) on weighted Bergman space $A^2_{\alpha}({\mathbb{B}}_2)$(${\alpha}$ > -1) and Hardy space $H^2({\mathbb{B}}_2)$, and characterize the structure of ${\mathcal{V}}^{\ast}(z^N)$, the commutant algebra of the von Neumann algebra generated by $M_{z^N}$.

Implementation of Algebra and Data Model based on a Directed Graph for XML (방향 그래프 기반 XML 데이터 모델과 대수 구현)

  • Park, Seong-Hui;Choe, Eun-Seon;Ryu, Geun-Ho
    • The KIPS Transactions:PartD
    • /
    • v.8D no.6
    • /
    • pp.799-812
    • /
    • 2001
  • As XML become more popular for encoding data and exchanging format on the web, recent work on processing XML Document in DBMS has been performed. However, there is no formal data model for XML, and there is lack of research on XML algebra for processing complex XML query and even the mediators have many restrictions. Therefore, this paper proposes formal data model and algebra based on directed edge labeled graph for XML query. To implement algebra, not only algorithms of operation for algebra are presented, but also they are implemented using access method and path index based on RDBMS or ORDBMS. In particular, experiments to show the effectiveness of the implemented algebra are performed on XML documents on EST data which are semistructured data.

  • PDF

CONTINUITY OF JORDAN *-HOMOMORPHISMS OF BANACH *-ALGEBRAS

  • Draghia, Dumitru D.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.30 no.2
    • /
    • pp.187-191
    • /
    • 1993
  • In this note we prove the following result: Let A be a complex Banach *-algebra with continuous involution and let B be an $A^{*}$-algebra./T(A) = B. Then T is continuous (Theorem 2). From above theorem some others results of special interest and some well-known results follow. (Corollaries 3,4,5,6 and 7). We close this note with some generalizations and some remarks (Theorems 8.9.10 and question). Throughout this note we consider only complex algebras. Let A and B be complex algebras. A linear mapping T from A into B is called jordan homomorphism if T( $x^{1}$) = (Tx)$^{2}$ for all x in A. A linear mapping T : A .rarw. B is called spectrally-contractive mapping if .rho.(Tx).leq..rho.(x) for all x in A, where .rho.(x) denotes spectral radius of element x. Any homomorphism algebra is a spectrally-contractive mapping. If A and B are *-algebras, then a homomorphism T : A.rarw.B is called *-homomorphism if (Th)$^{*}$=Th for all self-adjoint element h in A. Recall that a Banach *-algebras is a complex Banach algebra with an involution *. An $A^{*}$-algebra A is a Banach *-algebra having anauxiliary norm vertical bar . vertical bar which satisfies $B^{*}$-condition vertical bar $x^{*}$x vertical bar = vertical bar x vertical ba $r^{2}$(x in A). A Banach *-algebra whose norm is an algebra $B^{*}$-norm is called $B^{*}$-algebra. The *-semi-simple Banach *-algebras and the semi-simple hermitian Banach *-algebras are $A^{*}$-algebras. Also, $A^{*}$-algebras include $B^{*}$-algebras ( $C^{*}$-algebras). Recall that a semi-prime algebra is an algebra without nilpotents two-sided ideals non-zero. The class of semi-prime algebras includes the class of semi-prime algebras and the class of prime algebras. For all concepts and basic facts about Banach algebras we refer to [2] and [8].].er to [2] and [8].].

  • PDF

Almost derivations on the banach algebra $C^n$[0,1]

  • Jun, Kil-Woung;Park, Dal-Won
    • Bulletin of the Korean Mathematical Society
    • /
    • v.33 no.3
    • /
    • pp.359-366
    • /
    • 1996
  • A linear map T from a Banach algebra A into a Banach algebra B is almost multiplicative if $\left\$\mid$ T(fg) - T(f)T(g) \right\$\mid$ \leq \in\left\$\mid$ f \right\$\mid$\left\$\mid$ g \right\$\mid$(f,g \in A)$ for some small positive $\in$. B.E.Johnson [4,5] studied whether this implies that T is near a multiplicative map in the norm of operators from A into B. K. Jarosz [2,3] raised the conjecture : If T is an almost multiplicative functional on uniform algebra A, there is a linear and multiplicative functional F on A such that $\left\$\mid$ T - F \right\$\mid$ \leq \in', where \in' \to 0$ as $\in \to 0$. B. E. Johnson [4] gave an example of non-uniform commutative Banach algebra which does not have the property described in the above conjecture. He proved also that C(K) algebras and the disc algebra A(D) have this property [5]. We extend this property to a derivation on a Banach algebra.

  • PDF

A New Curriculum for Structural Understanding of Algebra

  • Kirshner David
    • Research in Mathematical Education
    • /
    • v.10 no.3 s.27
    • /
    • pp.169-187
    • /
    • 2006
  • Ubiquitous errors in algebra like $(x+y)^2=x^2+y^2$ are a constant reminder that most students' manipulation of algebraic symbols has become detached from structural principles. The U.S. mathematics education community (NCTM, 2000) has responded by shying away from algebra as a structural study, preferring instead to ground meaning in empirical domains of reference. A new analysis of such errors shows that students' detachment from structural meaning stems from an inadequate structural curriculum, not from the inherent difficulty of adopting an abstract perspective on expressions and equations. A structural curriculum is outlined that preserves the possibility of students' engaging fully with algebra as both an empirical and a structural study.

  • PDF

TRILINEAR FORMS AND THE SPACE OF COMTRANS ALGEBRAS

  • IM, BOKHEE;SMITH, JONATHAN D.H.
    • Honam Mathematical Journal
    • /
    • v.27 no.4
    • /
    • pp.595-602
    • /
    • 2005
  • Comtrans algebras are modules equipped with two trilinear operations: a left alternative commutator and a translator satisfying the Jacobi identity, the commutator and translator being connected by the so-called comtrans identity. These identities have analogues for trilinear forms. On a given vector space, the set of all comtrans algebra structures itself forms a vector space. In this paper, the dimension of the space of comtrans algebra structures on a finite-dimensional vector space is determined.

  • PDF

THE JORDAN DERIVATIONS OF SEMIPRIME RINGS AND NONCOMMUTATIVE BANACH ALGEBRAS

  • Kim, Byung-Do
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.29 no.4
    • /
    • pp.531-542
    • /
    • 2016
  • Let R be a 3!-torsion free noncommutative semiprime ring, and suppose there exists a Jordan derivation $D:R{\rightarrow}R$ such that [[D(x),x], x]D(x) = 0 or D(x)[[D(x), x], x] = 0 for all $x{\in}R$. In this case we have $[D(x),x]^3=0$ for all $x{\in}R$. Let A be a noncommutative Banach algebra. Suppose there exists a continuous linear Jordan derivation $D:A{\rightarrow}A$ such that $[[D(x),x],x]D(x){\in}rad(A)$ or $D(x)[[D(x),x],x]{\in}rad(A)$ for all $x{\in}A$. In this case, we show that $D(A){\subseteq}rad(A)$.

JORDAN DERIVATIONS ON SEMIPRIME RINGS AND THEIR RADICAL RANGE IN BANACH ALGEBRAS

  • Kim, Byung Do
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.31 no.1
    • /
    • pp.1-12
    • /
    • 2018
  • Let R be a 3!-torsion free noncommutative semiprime ring, and suppose there exists a Jordan derivation $D:R{\rightarrow}R$ such that $D^2(x)[D(x),x]=0$ or $[D(x),x]D^2(x)=0$ for all $x{\in}R$. In this case we have $f(x)^5=0$ for all $x{\in}R$. Let A be a noncommutative Banach algebra. Suppose there exists a continuous linear Jordan derivation $D:A{\rightarrow}A$ such that $D^2(x)[D(x),x]{\in}rad(A)$ or $[D(x),x]D^2(x){\in}rad(A)$ for all $x{\in}A$. In this case, we show that $D(A){\subseteq}rad(A)$.

THE RESULTS CONCERNING JORDAN DERIVATIONS

  • Kim, Byung Do
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.29 no.4
    • /
    • pp.523-530
    • /
    • 2016
  • Let R be a 3!-torsion free semiprime ring, and let $D:R{\rightarrow}R$ be a Jordan derivation on a semiprime ring R. In this case, we show that [D(x), x]D(x) = 0 if and only if D(x)[D(x), x] = 0 for every $x{\in}R$. In particular, let A be a Banach algebra with rad(A). If D is a continuous linear Jordan derivation on A, then we see that $[D(x),x]D(x){\in}rad(A)$ if and only if $[D(x),x]D(x){\in}rad(A)$ for all $x{\in}A$.