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Ubiquitous errors in algebra like (x+ y)* =x* +y* are a constant reminder that most
students’ manipulation of algebraic symbols has become detached from structural
principles. The U.S. mathematics education community (NCTM, 2000) has responded by
shying away from algebra as a structural study, preferring instead to ground meaning in
empirical domains of reference. A new analysis of such errors shows that students’
detachment from structural meaning stems from an inadequate structural curriculum, not
from the inherent difficulty of adopting an abstract perspective on expressions and
equations. A structural curriculum is outlined that preserves the possibility of students’
engaging fully with algebra as both an empirical and a structural study.
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ANEW CURRICULUM FOR STRUCTURAL UNDERSTANDING OF
ALGEBRA

Algebra is tough, or at least that’s the reputation it’s garnered for itself. You need to be
smart to understand algebra and master its arcane rules and methods. This perception is
supported by decades of studies of persistent error patterns, or “mal-rules” (Sleeman
1986) that seem to indicate students have considerable difficulty understanding algebraic
rules (Table 1). Still, research about learning is developed and interpreted within
theoretical traditions based on assumptions about the nature of human cognition. If those
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assumptions are called into question, research results can be reinterpreted. But how, you
may ask, could students’ persistent errors possibly indicate anything other than that
algebra is difficult to understand? Well hold on to your safety harness as we peer down on
thirty years of algebra error research from the heights of Western philosophy. Though,
quite bumpy and bruising to traditional assumptions about learning, the ride, I assure you,
is well worth it, for we parachute down amidst new vistas of possibility for students’
algebraic accomplishment.

Table 1. Mal-rules and Correct Rules

Mal-rules Correct Rules
(@a+bf =a® +b° (ab)¢ = a‘ b°
a™ =a"a" a™ =a"a"
4™ = a™ + 4" a(m + n) =am + an
a _a.a bte b, c
b+c b ¢ a a a
a+x a & _a
b+x=3 bx b

Traditional algebra classrooms are familiar places to all of us who are interested in
mathematics education at the secondary school. Textbooks present rules for manipulating
expressions and equations. Teachers explain and demonstrate the rules. Students practice
solving routine application problems according to the models they’ve been shown. To the
extent students can reliably demonstrate required skills we conclude our explanations and
demonstrations have been understood, at least at a rudimentary level. For students who
become ensnared by error patterns like those in Table 1, we lament that our discussion of
rules may have been too abstract-the students have not comprehended, or have not
worked hard enough to consolidate their understanding. In the United

States, we find only 40% of Grade 12 students solve moderately complex symbol
manipulation problems without error (Blume & Heckman 1997), so we become
discouraged about even presenting the abstract face of algebra to our students.

This familiar view of algebra skills as reflecting understanding of rules and procedures
presented in the curriculum is consistent with cognitive assumptions that undergird 3
decades of algebra learning research within the Information Processing (IP) tradition of
cognitive psychology. For instance, Carry, Lewis, and Bernard’s (1980) cognitive analysis
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started with “the legal moves of the algebra game” (p. 2). More explicitly, Matz (1980)
idealizes an individual’s problem-solving behavior as a process employing two
components.

The first component, the knowledge presumed to precede a new problem, usually
takes the form of a rule a student has extracted from a prototype or gotten directly from a
textbook.

For the most part these are basic rules (such as the distributive law, the cancellation
rule, theprocedure for solving factorable polynomials using the zero product principle)
that form thecore of the conventional textbook content of algebra (p. 95).

The second component of her framework explored how error patterns arise through
(mis)application of “extrapolation techniques that specify ways to bridge the gap between
known rules and unfamiliar problems” (Matz 1980, p. 95).

The idea that students’ competence in algebraic skills depends upon mastering and
applying explicitly given rules is comfortable precisely because it fits so well with the
Cartesian dualist philosophical assumptions of Western thought (Brooks 1991; Clancey
1999; Dupuy 2000; Estep 2003). Cartesian dualism (yes, owing to René Descartes of
Cartesian Coordinates fame) is the “principle of the separation of mind and matter and
mind and body.”

“The mind, according to Descartes, was a ‘thinking thing’, and an immaterial substance. ...

the essence of himself, the part that doubts, believes, hopes, and so on. The body is a
material substance.” (Wikipedia 2005)°

Descartes believed that mind acts upon body to produce directed actions and behaviors.
But this interaction between separate “substances™ has always been taken as a kind of
philosophical conundrum. However, Information Processing theory, based on the
computational metaphor of mind as computer, solves “the metaphysical problem of mind
interacting with matter” (Haugland 1985, p. 2). For IP theories specify control structures
through which skills are executed based on a centralized serial script. In algebra, that
script is taken to include the rules of algebra as presented in the curriculum. So learning
algebra must involve grasping the rules and incorporating them into mental scripts as in
Matz’s model (Matz 1980). Indeed, so embedded are we in the dualist ideas of our culture,
it is hard to even make sense of the proposal that students might acquire algebra skills
without even engaging with the meaning of the rules presented in the curriculum, let
alone understanding the rules. A

Despite the dominance of dualism, our intuitions as mathematics educators and
researchers often point us in other directions. Consider the mal-rules presented above.

2 http://en.wikipedia.org/wiki/Cartesian_dualism
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What is so confounding about such errors is their superficial character. Rather than
reflecting misunderstanding of the meaning of correct algebra rules, they seem to indicate
nothing more substantial than misperception of the visual forms of the correct rules. It is
in this sense that Thompson (1989) spoke of algebra students as “prone to pushing
symbols without engaging their brains” (p. 138). Somehow students seem to be riding the
visual forms of algebraic notations without engaging with the meaning of the rules. For
instance, in his landmark study Erlwanger (1973) observed:

One may be tempted to treat this kind of talk as evidence of an algebraic concept of

commutativity. But, in view of the whole picture of Benny’s concept of rules, it appears more

likely that it involves less awareness of algebraic operations than it does awareness of patterns
on the printed page. (Note to p. 19)

Of course, these exclamations of frustration with “mindless” manipulation of algebraic
symbols involve students who are struggling in their mastery of the requisite skills. But
what of the successful students? Isn’t it possible that the failing students are those who
have given up on understanding and reverted to mindless manipulation of symbols,
whereas the successful students operate from understanding? In two studies, I set out to
explore the basis for successful algebra manipulation skills, only to discover that visual
pattern matching underlies much of the successful work our students produce.

The first study examined students’ parsing knowledge. Supposing a student can
successfully parse an expression like 3x*[as 3(x?)rather than (3x)”]. From a dualist
perspective we assume the student has explicit knowledge of order of operations rules
(e.g., exponentiation has precedence over multiplication). But Kirshner (1989)
demonstrated such competencies often are linked to the visual characteristics of the
symbol system. What the student really knows at an implicit level is something more like
“diagonal connections precede horizontal connections.” When such tasks were presented
in an alternative notation, 3MxE2, that preserves the declarative information about the
operations (“M” = multiplication, and “E” = exponentiation), students’ ability to make the
correct parsing decision was compromised. For many students, parsing knowledge was
inextricably linked to the visual cues of ordinary notation. They didn’t “know” the rules
in an intellectual sense, rather they were adept at maneuvering within the visual space of
the printed symbols.

The second study examined the nature of students’ engagement with transformational
rules such as those presented in Table 2. Take a close look at the two columns of rules.
Note that some rules, like those in the left column, have a certain quality of visual
salience that makes the left-hand and right-hand sides of the equation look naturally
related to one another. The quality of visual salience is easy to recognize but difficult to
define. Partly it involves symbolic and spatial elements repeated from the left-hand to the
right-hand side of the equation. But whatever the causes, its effects are similar to an
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animation sequence in which distinct visual frames are perceived as ongoing instances of
a single scene-think of an animated cartoon made up of separate pictures, but perceived
as a single evolving visual scene (Kirshner & Awtry 2004). So for visually salient rules
the observer doesn’t have to stop to process conscious connections between two separate
sides of the equation, for they are not perceived as separate entities, but as a single entity
transformed over time.

Table 2. Visually Salient and Non Visually-salient Transformational Rules

x(y+2)=xy+xz =y =(x -y +Y)

()" = x"y* (x+y)? =x* +2xy + y?

(x’) =x” 4y =+ ) -+ )
wy_w woy_wty

X Z XZ X Z_ Xz

w_r w.ry_w

Xz oz X z_xy

What we found in our study is that students learn visually salient rules more easily
than “clunky” rules that are not visually salient, but at a more superficial level. That is,
they could recognize correct applications of the visually salient rules more easily than the
clunky rules, but they also were more likely to over generalize visually salient rules to
cases where the rule didn’t actually apply, but “looked” right. This is not surprising, as the
visually salient rules are the spawning ground for virtually all of the mal-rules that beset
students’ efforts at mastering algebra symbol skills (look again at Table 1). But what is
noteworthy is that our study involved novices (grade 7 students) who had not previously
been introduced to algebra rules. We taught these students a mixed set of visually salient
and clunky rules in a strict didactic fashion, not differentiating in our instruction between
rule types. Yet students engaged spontaneously with the visual surface structure of the
notations.

Reliance of visual cues is not a pathological adaptation of students who are failing, but
a norm for how students engage cognitively with the algebra symbol system from the
very start.

Although dualist ideas dominate in Western philosophy and in psychology, there is
considerable scholarly debate about the adequacy of mentalist models of cognitive
competencies. I want to take a few moments to introduce connectionist psychology, an
approach to modeling cognitive skills that has arisen in recent years to challenge the
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hegemony of rule based models like those developed in IP theories (see Bereiter 1991;
Dreyfus 2002; Gee 1992). My purpose, here, is to help establish as a real possibility that
our cultural commonsense about learning, rooted in dualist philosophy, may be wrong.
Skillful performance in a domain like algebra doesn’t have to be based on learning “the
legal moves of the algebra game” (Carry, Lewis, & Bernard 1980, p. 2), or on “a rule a
student has extracted from a prototype or gotten directly from a textbook™ (Matz 1980, p.
95). Cognitive skills can be something quite different.

Connectionism represents cognition as a spreading of activation among nodes in a
system of mutually interacting nodes — rather like neurons interacting within the brain.
Typically connectionist systems include input nodes corresponding to features of the
domain to be mastered and output nodes related to actions that can be taken or decisions
that can be reached, as well as hidden units that intermediate between input and output
nodes. But whereas an Information Processing system would have to spell out in explicit
rules how inputs and outputs are linked, connectionist systems work differently. Nodes
are interconnected through links that carry excitory and/or inhibitory signals
(Haberlandt 1997). When a certain threshold of activation is reached, the node sends
signals to those other nodes to which it is connected. In this way, connectionism pictures
cognition as involving parallel and distributed processing, rather than centralized, serial
script following.

In a connectionist system, the links between nodes are weighted, meaning that a link
may impede the signal passing along it, thereby reducing its effect; or it may allow the
full strength of the signal to reach its destination (Bereiter 1991). Learning is modeled as
feedback loops that gradually adjust the connection weights between nodes according to
the effectiveness of the system’s previous actions (Lloyd 1989; Rumelhart, Hinton &
Williams 1986). These gradual adjustments of the connection weights lead to a gradual
improvement of performance as the system tends toward a steady state. In short,
connectionism models cognitive skills as weighted correlations among a large number of
input, output, and intermediate nodes. No centralized rule based program runs the show.

Part of the impetus for pursuing connectionist alternatives is that IP models “are
cumbersome and brittle; they tend to break down when the stimulus conditions are poorly
specified” (for example in visual discrimination tasks like recognizing faces from
different angles, even faces that may have altered with age). “Connectionist models are
well suited for just such situations” (Haberlandt 1997, p.159). So, if we forget (as
students are wont to do) about rules as having meaning, we can imagine that
connectionist like processes lead to skill development based only on connections among
visual features of the symbolic display. This doesn’t mean that discussion of rules plays
no role in learning of algebra. For talk about rules can focus the cognitive apparatus on
input and output features that productively are incorporated into the connectionist system
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as input and output nodes: “Rules, thus, may play an important role as knowledge that
enters into computations, but this is a fundamentally different role from the one
traditionally conceived by philosophers and cognitive scientists, where rules constitute
the computational algorithms themselves” (Bereiter 1991, p. 14). Or to put it more plainly
rules can help us focus on critical elements, but this doesn’t have anything to do with
understanding rules and using them as explicit guides for action: “from a connectionist
standpoint such rule-based models are fictions” (Bereiter & Scardamalia 1996, p. 509).

This connectionist view of cognition is challenging to all of us rooted, as we are, in the
dualist perspectives of our culture. But connectionism does constitute a coherent
alternative to the IP approach — computer simulations have been developed that perform
effectively in structured domains, without guidance of rules.

Let’s return to the traditional algebra classroom sketched in the opening paragraphs,
but now reviewed through non-dualist, connectionist lenses. Textbooks and teachers
present explicit rules and procedures for solving algebra problems. Students practice such
problems, and eventually get better at them. But these two classroom events are largely
independent of one another. Developing expertise is not based on “understanding” and
applying the rules presented in the curriculum.

Rather, through practice, students gradually refine the pattern matching nets that
organize activity within the visual space of the printed symbols. With enough attention
and perseverance, a minority of students eventually do overcome the tendency to produce
mal-rules. But these mal-rules are not “misunderstandings,” they are visual
overgeneralizations, and overcoming them just signals that the pattern matching nets have
become sufficiently refined — not that “understanding” has been achieved.

Because we offer reasoned explanations to our students about algebraic rules and
processes, we create an illusion for ourselves that algebra is an intellectual study. But
what we’re really doing is leaving our students to flounder mindlessly in a sea of visual
signals.

THE POSSIBILITY FOR MEANINGFUL MANIPULATION OF ALGEBRAIC
SYMBOLS

My goal for the rest of this paper is to outline a curricular approach aimed at making
algebraic symbol manipulation meaningful for students. But first I need to deal with what
may strike the reader as a bait-and-switch strategy. For I’ve spent the first half of the
chapter arguing that cognition is parallel and distributed, that rule-based models are
“fictions,” that algebra skills are a correlation of surface visual features of the notation;
now I'm trying to sell you on meaningful algebraic symbol manipulation. What
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Happened to the Non-dualist Perspective!

If connectionism views cognition as a spreading of activation among nodes in a
system of mutually interacting nodes, what are we to make of rationality, logic,
reasoning? Are these kinds of centralized, serial processes now banished from mental
life? The answer, in a nutshell, is that rationality, logic, reasoning are lifted out of the core
inner mechanisms of cognition (where dualist philosophers have supposed they structure
cognitive scripts that govern performance), and spun off as discursive practices within the
social world (Kirshner 2001; Bereiter 1991, Gee 1992):

Rationality ... originates in this essentially social process of justification. What we call logical
reasoning, and attribute to the workings of the individual mind, is actually a public

reconstruction meant to legitimate a conclusion by showing that it can be derived by procedures
recognized as valid. (Bereiter 1991, p. 14)

What this means is that the goal we mathematics educators hold precious—that our
students will become reasoners about their mathematical work—is dramatically
transformed when we adopt a nondualist perspective. Instead of thinking that rationality,
logic, and reasoning are built into the tasks we assign to students, we need to enact these
cognitive attributes within the social milieu of the classroom. Rationality resides in the
justification of algebra problem solving, not in the solving of algebra problems.

What has most seriously impeded the development of an algebra curriculum to support
explicit reasoning about rules and procedures is the dualist assumption that solving
algebra problems already involves students in reasoning. We consistently misconstrue
students’ correct algebraic work as indicating explicit knowledge, and hence never bother
to do our own analysis of what’s really involved in step-by-step justification of algebraic
procedures.

Let me illustrate this point by describing a teaching episode I observed not too long
ago. The teacher, of several years experience, was working with her class on solving the
equation —2 + 4n + 9 = 20. She had just written on the board a solution method
offered by one student who added 2 to both sides, then subtracted 9 from both sides, and
finally divided both sides by 4. The method is correct (though collecting like terms first
would have been more efficient). Here is the first step of this student’s work:

-2+4n+9=20 so -2+4n+9=20 s0 4n+9=22
+2 +2
Next the teacher transcribed onto the board an incorrect method offered by another
student, beginning with this step:

-2+4+4n+9=20
—-2+4n+9=20 SO f ;‘ SO 4n +9 =22
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The teacher corrected the student by pointing out that you have to do the same thing to
the whole side of an equation, not just to a single term. This is a correct explanation.
Clearly the teacher knew what she was talking about. And she is to be commended on
developing a classroom process in which students have the opportunity to present their
ideas and solutions. But is the discourse of this classroom really adequate to facilitate
meaning making on the part of the students?

Let’s look at this episode from the point of view of the students. Note that the correct
step and the incorrect step shown above look similar. In both cases, it looks like an
operator is being applied only to a single term on the left-hand side of the equation. What
we would need to do to make the actual structure of the first solution explicit would be
something like the following:

2+4n+9=20
(-2 +4n +9)+2 =20+ 2 law of equations
2+ (-2 +4n +9) =20 + 2 commutative law for addition

(2 +-2) + (4n + 9) = 20 + 2 associative law for addition

But, like the teacher I observed, we mostly don’t do this, because we are satisfied that
somehow the student getting the correct answer already “understands” what is going on.
But in all likelihood neither the successful nor the unsuccessful student understands the
application of associative and commutative laws implicit in such derivations. Both are
merely aping visual formats for solving equations they’ve seen modeled in the classroom.
And the teacher’s admonition — you have to do the same thing to the whole side —
though correct, communicates nothing to the students, because the teacher has never
bothered to think through the implications of what “doing the same thing to the whole
side” means in structural terms. This is what can make teaching algebra such a frustrating
experience as we hold fast to the belief, stemming from a dualist ideology, that at least the
students who are succeeding in applying procedures correctly understand what they’re
doing — surely they must understand something of what they’re doing! — but in our
heart of hearts, we know we’re not getting through.

THE LEXICAL SUPPORT SYSTEM

In the opening paragraph of this chapter I posed a riddle: “how ... could students’
persistent errors possibly indicate anything other than that algebra is difficult to
understand?” The answer is that there is nothing in the record of students’ past
performance — their errors or their correct work—that gives us any idea whatsoever as to
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whether algebra is difficult to understand. That’s because students, by and large, haven’t
been engaged in the project of creating meaning in their development of algebraic skills.
Rather, they’ve been refining their sensitivity to patterns in the visual display. So we
don’t know how they would fare with a curriculum designed to support meaning making
in the manipulation of algebraic symbols. In this section, we finally get down to outlining
how such an instructional approach can be structured.

The curricular challenge for making algebra structurally meaningful is to create
discursive practices that intervene between students’ visual apprehension of algebraic
notation and their manipulation of expressions and equations, establishing a new layer of
explicit justification for the latter. As the centerpiece for such a discourse I sketch out a
Lexical Support System (LSS) (Kirshner 1998; Kirshner & Awtry 2004) that makes
explicit the structural aspects of expressions and equations that are only tacitly assumed
in a traditional approach. This curricular approach is currently in the process of
refinement and testing, and is proposed for wide-scale implementation in secondary
school algebra instruction. Rather than go through the curriculum in systematic detail, I
provide an overview of key points, and sketch out instructional phases with a view to
giving the “flavor” of the approach.

The LSS approach transforms the simplification of expressions and the solving of
equations by providing a structural vocabulary that enables more rigorous description of
algebraic rules and procedures. The purpose is to provide for step-by-step justification of
algebraic procedures so that explicit reasoning can come to imbue the student’s
relationship to the symbol system. The LSS curriculum is serial and sequential-a mastery
curriculum, in which a topic is learned thoroughly and completely before progressing to
the next. In this respect it is unlike the traditional spiral curriculum which revisits prior
topics repeatedly, each time at a higher level of sophistication (hopefully).

Algebra has two faces. The empirical face points outward toward domains of reference,
toward modeling phenomena in the world, toward application, toward number, quantity,
and shape. The structural face points inward to the logical infrastructure, to the grammar
of rules and procedures-abstracted from external realms of interpretation. The LSS is a
structural curriculum. It deals only with the formal alphanumeric symbol system,
disregarding graphs, tables, natural language description, physical models, geometric
analogies, and so on. So the LSS is not the “whole enchilada” of algebra instruction.
Rather, it is proposed as the inner core of a much broader and more extensive curriculum
that includes both faces of algebra. Still, it is sensible for us to focus curricular attention
on this face independently, to ensure that algebraic structure is properly represented for
our students. For, as Bell (1936) described the structural mandate:

The very point of elementary algebra is simply that it is abstract, that is, devoid of any meaning
beyond the formal consequences of the postulates laid down for the marks. ... Algebra stands
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upon its own feet as a "hypothetico-deductive system." (p. 144)

The LSS approach is comprised of 4 phases. The foundation, introduced in Phase I, is
an explicit accounting of order of operations conventions. Such an account specifies
aggregation markers that visually “force” a parse of the expression, and a hierarchy of
operations that applies in the absence of aggregation markers. Aggregation markers
include the expected brackets, braces, and parentheses, but also superscription (compare

3x**’and3x® + y ) and the vinculum (horizontal line) used in fractions and radicals
(compare w/; +5andvx + 5 ). _

The operation hierarchy is neatly summarized in terms of operation levels ascending

from 1 to 3:

Level 1 — addition and subtraction
Level 2 — multiplication and division

Level 3 — exponentiation and radical

where
(a) Higher level operations are precedent (e.g., 1+ 3x =1+ [3(x?)]), and
(b) If adjacent operations are of equal level, the operation on the left is precedent
(eg.,5-3+1=(5-3)+1)

Order of operations is woefully neglected in traditional approaches that often rely on
the PEMDAS acronym (Parentheses, Exponentiation, Multiplication, Division, Addition,
Subtraction) that mixes together aggregation markers and the hierarchy of levels,
providing an incomplete and inexplicit account of each. Such practices persist in the
traditional curriculum because, relying on visual cues, students are generally able to parse
expressions correctly (Kirshner 1989). However, explicit knowledge of order of
operations turns out to be a crucial key into the realm of explicit reasoning about
transformational rules and procedures in algebra.

Phase I begins with presentation of order of operations rules which are practiced
through expression evaluation exercises that require students to justify their step-by-step
calculation of binary combinations in terms of precedence rules. Upon the foundation of
order of operations is erected the basic lexical elements of the LSS. The principal
operation of an expression is defined as the least precedent operation according to the
order of operation rules. For instance, the principal operation of 3x*” is multiplication
because that operation has least precedence within the given expression — it would be
the last operation performed if we were evaluating the expression for given values of x
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and y . Principal subexpressions are then defined as the parts of an expression joined by
the principal operation (so 3 and x°*” are the principal subexpressions of3x>*”).
Recursively, each subexpression can itself be parsed into principal subexpressions
yielding a complete structural description of an expression. In this phase, students use the
language of “principal subexpressions,” “next-most principal subexpressions” etc. to talk
through the structure of operations from most principal to most precedent. Because this is
a mastery approach, we work Phase 1 through to expressions of arbitrary complexity. For
instance, in a small-scale study designed to organize and initially try out this approach,
students were asked (and able!) to describe the structure of complex expressions like

132 - 5x ,/250 -15°
23 - 42
22 +3

The language of principal operations and principal subexpressions allows us to
formally define some of the basic terminology that we use in algebra classes, but without
structural grounding: Terms (factors) are the principal subexpressions of an expression
whose principal operation is addition (multiplication).

Phase II introduces transformational rules of algebra (e.g., associative, distributive,
difference of squares, etc.). Transformational rules are approached as templates that allow
one to operate on an expression of a specified syntactic form to produce an expression of
another syntactic form. For instance, (xy)’ = x”y” takes an expression whose principal
operation is exponentiation and whose base is a product and transforms it into an
expression whose principal operation is multiplication, and whose principal
subexpressions (i.e., factors) both have exponentiation as their principal operations. This
enables transformational rules to be rigorously applied. For instance, we can apply the
(xp)* = x*y rule to [(a + b*)c?T* ™ not (only) because of its visual relationship to
the left-hand side of the rule, but because (xy)’ forms an explicit structural template that
[(a +b*)c*P*™ fits. This explicit verbal accounting of transformational rules
intervenes in the spontaneous visual association between right-hand and left-hand side
that seems to arise for visually salient rules, demanding that the two sides be individually
analyzed. Thus mal-rules, which are visual overgeneralizations of visually salient rules,
should be reduced or completely eliminated through this approach.

Phase III extends the LSS approach to the structural description of standard
transformational tasks.

For example, we define to factor as “to transform an expression whose principal
operation is not multiplication to an expression whose principal operation is
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multiplication.” Phase III instruction requires students to reason about algebraic tasks
based solely on such formal task descriptions. For instance, with only the definition of “to
factor” at their disposal, students select out transformational rules that could be used to
factor an expression (e.g, xytxz=x(ytz), x’-y*=(x-y)-(x+y) and
(xy)" = x*y®, etc.). This skill draws on the explicit description of transformational rules
developed in Phase II. Phase III also includes multi-step applications like simplifying
fractional expressions that may require extensive preparation before the final
simplification can be performed. For instance, if simplifying a fractional expression is
defined as “cancelling a common factor from the numerator and denominator of the
fraction,” then factoring numerator and denominator are logical precursors to the final
simplifying step. Davis (1984) pointed out that students’ extended derivations in
clementary algebra usually are constituted as “Visually Moderated Sequences” which
“can be thought of as a visual cue V| which elicits a procedure P, whose execution
produces a new visual cue V,, which elicits a procedure P,,... and so on” (p. 35). The LSS
curriculum overlays a structural discourse that enables solution strategies to be mapped
out and discussed in advance, and deliberately implemented.

Phase IV extends the structural apprdach to the solving of equations. Solving
equations involves applying two kinds of rules. Much of the work with equations is
simplifying the individual expressions given on the right-hand or on the left-hand side of
the equal sign. This is exactly what already has been addressed in the first 3 phases.
Additionally, the law of equations enables one to do the same thing to both sides of an
equation (with appropriate restrictions).

From a structural perspective there are several different cases, each with its own
structural dynamics of solution: single occurrence of a variable; multiple occurrences of a
single variable, all to the same degree; more than a single degree of a variable; and
systems of equations. Each case can be dealt with in a comprehensive fashion before
moving on to the next. For instance, equations with a single occurrence of an unknown all
can be solved by applying a strategy of “undoing” each operation using inverse
operations starting with the principal operation, and working backward through the
expression to the most precedent operation. In the mastery curriculum mode, one works
such a strategy through to solving complex equations like

253

’ x +21 =5
3

before moving on to the other cases.

We do not stop at simple linear functions, as is typical of traditional curricula.
This completes the overview of instructional phases. In our initial testing of this approach,
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and in my own prior informal experimentation, it seems the structural perspective is not
difficult to master even for weak students, given sustained attention and practice. The
following contrived episode, similar to many I’ve engaged in when using the LSS
approach, illustrates the sort of communicational possibilities opened up by these more
rigorous discursive practices. This interaction involves a student’s erroneous cancellation
of the 3s in

3x? +1 _ x?+1

3y-2  y-2

Teacher: What rule are you using in this step?

Student: The cancellation rule for fractions.

Teacher: Can you remind me what that rule is?

Student: It’s the rule that allows canceling a common factor of the numerator and
denominator of a fractional expression.

Teacher: Okay, let’s take a look at it. What have you canceled?

Student: The threes, because they’re factors, they’re multiplied.

Teacher: Good, they are indeed factors, but are they factors of the numerator and
denominator? Let’s check. What is the principal operation of the numerator?

Student: Let’s see, there’s an exponentiation, a multiplication, and an addition. So the
principal operation is addition, the least precedent one according to the
hierarchy of operations.

Teacher: Good, now what are the principal subexpressions called in this case?

Student: They’re called terms. ... Oh, I see, it has to be a factor of the whole numerator
and denominator to be canceled; not just part of it.

Such communicative possibilities can be contrasted with traditional algebra instruction
in which students and teachers talk past each other as they use words like “term” and
“factor” without structural grounding. Perhaps the teacher admonishes the student to
make sure they are canceling factors. But the structural distinction, so clear and tangible
for the teacher, is not conveyed to the student. Instead, the student learns only that they
have done something wrong and need to do something different. Absent an understanding
of the structural fundamentals, what gets recorded for the student is something about the
visual shape of incorrect and correct applications. Eventually, with persistence, the visual
patterns become sufficiently refined as to constrain incorrect applications. In this way,
what begins as an opportunity for communication of structural information is reduced to
support for mindless matching of visual patterns.

ENCULTURATING STUDENTS TO ALGEBRA AS A FORMAL DISCOURSE

The title of this paper suggests that structural understanding of algebra doesn’t need to
be as difficult for out students as it has seemed to be. I’ve tried to support this position by
showing that students’ persistent errors reflect disengagement from structural meaning,
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not difficulty in understanding structural algebra. In this respect, the problem of algebra is
not so much a conceptual one, as a cultural one. Because we’ve misconstrued students’
correct work as indicating understanding, we’ve dropped the ball in presenting a
structurally sound and formally rigorous version of algebra to our students. The LSS
approach involves attending more carefully to the discursive structure of our curriculum
and to the culture of students’ participation.

Elsewhere (Kirshner 2002; Kirshner & Awtry 2004) I’ve argued that learning a culture
has taken a back seat to learning concepts, with goals for the former often left confused
and undifferentiated. For that reason, I want to be especially careful to delimit the precise
cultural goals addressed by the LSS curriculum. For there are many facets to structural
algebra, and a serious and sustained instructional effort is needed to ensure that they are
addressed in a coherent and progressive fashion.

Ernest (1998) identified foundational aspects of mathematical method — logicality
and formality — that enable us to assert the validity of mathematical claims. Logicality
relies on explicit processes of inferential reasoning; formality, on rigorous application of
uninterpreted rules. Both of these aspects of mathematical method constitute important
goals for mathematics education. We want our students to be able to reason logically, and
we want our students to be able to exploit the power of symbols to preserve truth through
syntactically defined transformations.

The last concerted effort to orient school algebra around structural goals was in the
New Math era of the 1960s and 1970s. The New Math was oriented by “the concepts of
set, relation, and function and by judicious use of broadly applicable mathematical
processes like deductive reasoning and the search for patterns” (Fey & Graeber 2003, p.
524). However, the New Math is widely regarded to have been “excessively formal,
deductively structured, and theoretical .... fail[ing] to meet the needs for basic
mathematical literacy of average and low ability students” (NACOME 1975, p. ix).

In analyzing the difficulties encountered with the New Math, it is worth noting the
logicist agenda it reflected (Ernest 1985). Indeed, an explicit intention of the New Math
was to distribute part of the emphasis on deductive reasoning from the geometry
curriculum to algebra:

One way to foster an emphasis upon understanding and meaning in the teaching of algebra is
through the introduction of instruction in deductive reasoning. The Commission [on
Mathematics] is firmly of the opinion that deductive reasoning should be taught in all courses in

school mathematics and not in geometry alone. (College Entrance Examination Board 1959, p.
23)

But deductive reasoning is notoriously difficult for adults, let alone adolescents (Evans
1982). In particular, conditional reasoning—deductions based on if p then g — are very
confusing. When given if p then g, the logical principle Modus Ponens (assert p and
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deduce q) is straightforward; however, its contrapositive Modus Tolens (assert not g,
deduce not p), though valid, is unobvious. And invalid variations (assert not p, deduce not
q) and (assert ¢, deduce p) are accepted as valid by a plurality of adults (Evans 1982). The
focus on inferential logic likely explains why the New Math seemed to be successful only
for talented, college-bound students.

In contrast, the LSS focuses on formal methods of mathematics — structural analyses
of expressions and equations, and rigorous application of transformational rules. Now,
there is a sense in which an algebraic derivation can be considered a logical proof of
equivalence. For instance, the derivation

3x% =27 =3x% 3.9 =3(x2 —=9) = 3(x2 - 32) = 3(x - 3)(x +3)

proves the equivalence of 3x? —27and 3(x—3)(x+3). But in its logical structure,
such derivations rely on biconditional reasoning rather than conditional reasoning:
3x% —27 is true if and only if 3(x—3)(x+3) is true; and each step of the derivation
is logically reversible. Biconditional reasoning is easy for adults and for children, as the
truth or falsity of either term validly implies the truth or falsity, respectively, of the other.
All four of the inferential possibilities noted above are valid. So the LSS curriculum sets
out to address limited but achievable structural goals. It is an introduction to structural
algebra appropriate for the secondary school, one that may provide a foundation for many
students to enter further into the realm of mathematical culture as they progress in their
school experience.

Given the perceived failure of the New Math curriculum, and the subsequent record of
mindless symbol manipulation in elementary algebra, it is not surprising that
contemporary mathematics educators are shy about pursuing structural goals — even,
denying the possibility that formal work in algebra can be meaningful for students:

Acts of generalization and gradual formalization of the constructed generality must precede
work with formalisms — otherwise the formalisms have no source in student experience. The
current wholesale failure of school algebra has shown the inadequacy of attempts to tie the

formalisms to students' experience after they have been introduced. It seems that, “once
meaningless, always meaningless.” (Kaput 1995, pp. 74-75)

NCTM’s (2000) Principles and Standards for School Mathematics echos these
sentiments, thereby authorizing empirical algebra as the sole agenda for algebra
instruction:

In general, if students engage extensively in symbolic manipulation before they develop a solid
conceptual foundation for their work, they will be unable to do more than mechanical
manipulation (NRC 1998). The foundation for meaningful work with symbolic notation should
be laid over a long time. (p. 39)
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By reanalyzing this history, we can see new possibilities for a successful structural
curriculum to complement the burgeoning interest in empirical algebra spawned by new
technologies that enable us to hot-link symbolic, graphical, and tabular representations to
real-world data sources. Empirical algebra, by itself, is not enough. The bird of algebra
needs both of its wings to soar.
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