• 제목/요약/키워드: d- and q-axis Inductance

검색결과 43건 처리시간 0.04초

고출력 응용을 위한 영구자석 매입형 동기 릴럭턴스 전동기의 특성해석 (Characteristic Analysis of Permanent Magnet Assisted Synchronous Reluctance Motorfor High Power Application)

  • 장영진;김상길;신흥교;박성준;이중호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 하계학술대회 논문집 B
    • /
    • pp.914-916
    • /
    • 2004
  • In this paper, finite element analysis for a PMASynRM is presented and the characteristic analysis of inductance and torque is performed under the effect of saturation. The focus of this paper is characteristic analysis of d and q-axis inductances and torque according to magnetizing quantity of interior permanent magnet for PMASynRM. The d and q-axis current component ratios, load angles of a PMASynRM are investigated quantitatively on the basis of the proposed analysis method and the experimental test. Comparisons are given with output characteristic curves of normal SynRM and those according to the load in PMASynRM, respectively. And it is confirmed that the proposed model results in high output power performance.

  • PDF

On-line Parameter Estimation of Interior Permanent Magnet Synchronous Motor using an Extended Kalman Filter

  • Sim, Hyun-Woo;Lee, June-Seok;Lee, Kyo-Beum
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권2호
    • /
    • pp.600-608
    • /
    • 2014
  • This paper presents estimation of d-axis and q-axis inductance of an interior permanent magnet synchronous motor (IPMSM) by using an extended Kalman filter (EKF). The EKF is widely used for control applications including the motor sensorless control and parameter estimation. The motor parameters can be changed by temperature and air-gap flux. In particular, the variation of the inductance affects torque characteristics like the maximum torque per ampere (MTPA) control. Therefore, by estimating the parameters, it is possible to improve the torque characteristics of the motor. The performance of the proposed estimator is verified by simulations and experimental results based on an 11kW PMSM drive system.

산업현장에서 벡터제어용 유도전동기의 오프라인 파라미터 추정 (Off-line parameter Estimation of Induction Motors for Vector Control in Industrial Field)

  • 권병기;박가우;신원창;조응상;이진섭;최창호
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 1998년도 전력전자학술대회 논문집
    • /
    • pp.234-238
    • /
    • 1998
  • Parameter estimation of induction motor for vector control presented in this paper can be easily implemented and applied to inverters in the industrial field, because it needs no additional hardware such as voltage sensor and measuring equipment. At first, the stator resistance including switching loss of inverter is measured by simple voltage-current equation. Next, in pre-magnetization of machine by imposing the d-axis constant field-current, q-axis torque current is forced to the machine until its speed feedback reachs to pre-defined level of speed limit. At this time, we can measure the rotor time-constant by decreasing the distorted output-voltage of inverter. At last, stator inductance, transient inductance, and moment of inertia can be measured by the relationship of output voltage, output torque and speed feedback. The validity and usufulness of this method is verified by experimental results.

  • PDF

Harmonic Analysis of the Effects of Inverter Nonlinearity on the Offline Inductance Identification of PMSMs Using High Frequency Signal Injection

  • Wang, Gaolin;Wang, Ying;Ding, Li;Yang, Lei;Ni, Ronggang;Xu, Dianguo
    • Journal of Power Electronics
    • /
    • 제15권6호
    • /
    • pp.1567-1576
    • /
    • 2015
  • Offline inductance identification of a permanent magnet synchronous motor (PMSM) is essential for the design of the closed-loop controller and position observer in sensorless vector controlled drives. On the base of the offline inductance identification method combining direct current (DC) offset and high frequency (HF) voltage injection which is fulfilled at standstill, this paper investigates the inverter nonlinearity effects on the inductance identification while considering harmonics in the induced HF current. The negative effects on d-q axis inductance identifications using HF signal injection are analyzed after self-learning of the inverter nonlinearity characteristics. Then, both the voltage error and the harmonic current can be described. In addition, different cases of voltage error distribution with different injection conditions are classified. The effects of inverter nonlinearities on the offline inductance identification using HF injection are validated on a 2.2 kW interior PMSM drive.

Simple Estimation Scheme for Initial Rotor Position and Inductances for Effective MTPA-Operation in Wind-Power Systems using an IPMSM

  • Kang, Yi-Kyu;Jeong, Hea-Gwang;Lee, Kyo-Beum;Lee, Dong-Choon;Kim, Jang-Mok
    • Journal of Power Electronics
    • /
    • 제10권4호
    • /
    • pp.396-404
    • /
    • 2010
  • This paper presents simple schemes used to estimate the initial rotor position and the d- and q-axis inductances for effective Maximum Torque per Ampere (MTPA) operation in a wind-power system using an IPMSM (Interior Permanent Magnet Synchronous Machine). An IPMSM essentially requires an exact coordinate transformation and accurate inductance values to use a reluctance torque caused by the saliency characteristic. In the proposed high-frequency voltage testing method, there is no voltage drop caused by the resistance and the electromotive force. The initial rotor position and the inductance can be measured through an analysis of the stator current without turning the rotor. The experimental results are presented in order to illustrate the feasibility of the proposed method.

2중 인버터 시스템을 갖는 해상용 풍력발전기의 3상 평형성에 관한 연구 (A Study on 3-Phase Balance of Offshore Wind Generator with Dual Inverter System)

  • 서장호
    • 조명전기설비학회논문지
    • /
    • 제27권6호
    • /
    • pp.23-30
    • /
    • 2013
  • This paper shows the method of winding connection and the balance of three phase of dual inverter systems used for offshore wind power generator. In order to satisfy low cost manufacturing of large scaled wind generator, the number of slot per pole per phase should be reduced. For this reason, in this research, the number is selected as '1' which is the minimum number that stator can have. Based on the prototype machine, three types of machine for the analysis are selected, and various performances especially in terms of electrically balanced condition are also investigated. Moreover, in this paper, new inductance modeling of dual 3-phase considering cross-coupling between two inverter systems is proposed. The several inductances such as mutual-, synchronous inductances are studied. By using FEA, based on calculated the flux linkage of d and q-axis, the validity of the proposed inductance modeling is confirmed.

SEV용 IPMSM의 토크리플 및 철손 저감을 위한 회전자 형상 설계에 관한 연구 (A Study on Rotor Shape Design to Reduce Torque Ripple and Core Loss of IPMSM for SEV)

  • 강정인;정태욱
    • 한국산업융합학회 논문집
    • /
    • 제26권2_2호
    • /
    • pp.327-332
    • /
    • 2023
  • As interest in eco-friendly and fuel-efficient electric vehicles has increased globally, there has also been a growing interest in the efficiency, vibration, and noise of motors for electric vehicles Electric vehicles generally have significantly lower driving ranges per charge compared to the maximum driving range per fueling of internal combustion engine vehicles. Additionally, there are issues with various vibrations and noise generated by the motor that can cause discomfort for passengers. Therefore, research is necessary to reduce losses, vibration, and noise of the motor to improve the driving range of electric vehicles. IPMSM with a purchased design can obtain additional reluctance torque by utilizing the difference in inductance between the d and q axes. However, due to this reluctance torque, torque ripple occurs larger than other motors. The increase in torque ripple also increases noise and vibration. Since the reluctance torque, which is the main cause of torque ripple, is determined by the shape of the motor components, torque ripple can be reduced through shape optimization. In this paper, a rotor shape for reducing torque ripple and core loss that causes vibration, noise, and efficiency to decrease of IPMSM for electric vehicles was proposed. Optimization design was carried out by changing the shape of the q-axis path of the rotor to reduce the difference in inductance of the d and q-axis of the rotor. Finally, in order to verify the validity of the design variables derived through the optimal design, the original model and the improved model were compared through the FEM. Compared to the original model, the improved model's torque verifying ripple was reduced by about 62% and core loss was reduced by about 29%, the superiority of the improved model.

Modeling of a Dual Stator Induction Generator with and Without Cross Magnetic Saturation

  • Slimene, Marwa Ben;Khlifi, Mohamed Arbi;Fredj, Mouldi Ben;Rehaoulia, Habib
    • Journal of Magnetics
    • /
    • 제20권3호
    • /
    • pp.284-289
    • /
    • 2015
  • This paper discusses general methods of modelling magnetic saturation in steady-state, two-axis (d & q) frame models of dual stator induction generators (DSIG). In particular, the important role of the magnetic coupling between the d-q axes (cross-magnetizing phenomenon) is demonstrated, with and without cross-saturation. For that purpose, two distinct models of DSIGs, with and without cross-saturation, are specified. These two models are verified by an application that is sensitive to the presence of cross-saturation, to prove the validity of these final methods and the equivalence between all developed models. Advantages of some of the models over the existing ones and their applicability are discussed. In addition, an alternative is given to evaluate all saturation factors (static and dynamic) by just calculating the static magnetizing inductance which is simply the magnitude of the ratio of the magnetizing flux to the current. The comparison between the simulation results of the proposed model with experimental results gives a good correspondence, especially at startup.

IPMSM의 회전자 형상에 따른 인덕턴스 변화에 대한 연구 (A Study on the Inductance Variation According to the Rotor Shape in IPMSM)

  • 김희운;허진
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 춘계학술대회 논문집 에너지변화시스템부문
    • /
    • pp.274-276
    • /
    • 2009
  • This paper presents a rotor shape optimization of interior type permanent magnet (IPM) motor for cogging torque minimization and maximization of reluctance torque. In order to minimize the cogging torque, the optimal notches are put on the rotor pole face and the arc type pole face is applied. The variations of cogging torque and d-q axis inductions are analyzed by finite element method (FEM).

  • PDF

고속용 동기 릴럭턴스 전동기 특성 (Characteristic of High Speed Synchronous Reluctance Motor(SynRM))

  • 주수원;한성진;구대현;홍정표
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제55권4호
    • /
    • pp.203-208
    • /
    • 2006
  • This paper presents characteristics of SynRM(Synchronous Reluctance Motor) that is compared with a high speed induction motor. SynRM is much suitable for high speed electric machines because of structural robustness. There are many kinds of SynRM according to the shape of rotors. Particularly, axially laminated anisotropic (ALA) rotor is suitable for high speed instruments. Characteristics of SynRM with ALA rotor is obtained from a governing voltage and torque equation mainly composed of d-axis and q-axis inductance that will be identified with finite element method.