• 제목/요약/키워드: cytosolic fraction

검색결과 80건 처리시간 0.021초

Effect of Protease Inhibitors on Degradation of Recombinant Human Epidermal Growth Factor in Skin Tissue

  • Ryou, Hae-Won;Lee, Jang-Won;Kyung, Kyung-Ae;Park, Eun-Seok;Chi, Sang-Cheol
    • Archives of Pharmacal Research
    • /
    • 제20권1호
    • /
    • pp.34-38
    • /
    • 1997
  • Recombinant human epidermal growth factor (rhEGF), a polypeptide of 53 amino acid residues, is subject to degradation by numerous enzymes, especially proteases, when it is applied on the skin for the treatment of open wound. Amastatin, aprotinin, bestatin, EDTA, EGTA, gabexate, gentamicin, leupeptin, and TPCK were investigated for the possible protease inhibitors, which may use to protect rhEGF from degradation by the enzymes in the skin. Skin homogenates containing protease inhibitors and rhEGF were incubated at $37^{\circ}C$ for 30 minutes. After the reaction was stopped with trifluoroacetic acid, the amount of rhEGF remaining in the sample was determined with an HPLC method. The percentages of rhEGF degraded, at the skin/PBS ratio of 0.25, in the mouse, rat, and human skin homogenate were 85%, 70%, and 46%, respectively. The degree of degradation of rhEGF in the cytosolic fraction was higher than that in the membrane fraction and these enzyme reactions were completed in 30 minutes. Bestatin, EGTA, and TPCK showed significant inhibitory effects on the degradation of rhEGF in the two fractions (p<0.05), while the other protease inhibitors had no significant inhibitory effects or, even resulted in deleterious effects. Therefore, the formulation containing one or several inhibitors among these effective inhibitors would be a promising topical preparation of rhEGF for the treatment of open wound.

  • PDF

Aloe속 식물이 알콜대사에 미치는 작용에 관한 연구(1) -Aloe vera가 알콜 및 알콜대사효소에 미치는 효과- (Studies on the Effect of Aloe spp. on Ethanol Methabolism (I). -Effect of Aloe vera on Serum Ethanol Level and Hepatic ADH Activity-)

  • 신국현;우원식;송영진;정하숙;이정미;심창섭
    • 생약학회지
    • /
    • 제26권2호
    • /
    • pp.148-153
    • /
    • 1995
  • As an initial step for evaluating hepatoprotective components against alcohol-induced toxicity, the effect of various fractions from Aloe vera on alcohol metabolism in rats were examined and the results were as follows: Water soluble fraction, after a single oral administration to rats, was found to cause a significant decrease in the serum ethanol concentration as well as enhancement of liver cytosolic ADH activity. On the other hand, the fractions soluble in organic solvent was found to cause an increase in the blood ethanol concentration and inhibit ADH activity. Further fractionation of the water soluble fraction by ultrafiltration system gave four subfractions corresponding to molecular weight and treatment of them in rats demonstrated that subfraction of M.W. > 30,000 exhibited the most potent enhancing activity of ethanol methabolism.

  • PDF

Capsaicin, a component of red peppers, stimulates protein kinase CKII activity

  • Rho, Yun-Wha;Bae, Young-Seuk
    • BMB Reports
    • /
    • 제43권5호
    • /
    • pp.325-329
    • /
    • 2010
  • Protein kinase CKII (CKII), a heterotetramer composed of two catalytic ($\alpha$ or $\alpha$') subunits and two regulatory ($\beta$) subunits, plays a critical role in cell proliferation and anti-apoptosis. Recently, capsaicin was shown to trigger apoptosis. Therefore, we examined the effect of capsaicin on CKII activity. Although capsaicin induced apoptotic death in HeLa cells, CKII activity was increased in the cytosolic fraction of HeLa cells after treatment. Capsaicin did not change the expression of the $CKII{\alpha}$ and $CKII{\beta}$ proteins. Capsaicin stimulated the catalytic activity of recombinant CKII tetramer, but not the $CKII{\alpha}$ subunit. Moreover, capsaicin enhanced the autophosphorylation of $CKII{\alpha}$ and $CKII{\beta}$. Taken together, our data suggest that capsaicin stimulates the phosphotransferase activity of CKII holoenzyme by interacting with the $CKII{\beta}$ subunit.

Subcellular Localization of Catalase Encoded by the ctl+ Gene in Schizosaccharomyces pombe

  • Lee, Sang-il;Lee, Joon;Roe, Jung-Hye
    • Journal of Microbiology
    • /
    • 제38권3호
    • /
    • pp.156-159
    • /
    • 2000
  • The cttl+ gene in Schizosaccharomyces pombe encoeds a catalse responsible for H2O2-resistance of this organism as judged by the H2O2-sensitive phenotype of the ctt1Δ mutant. In this study, we investigated the subcellular localization of the Ctt1 gene product. In wild type cells catalase activity was detected in the organelle fraction as well as in the cytosol. The ctt1Δ mutant contained no catalase activity, indicating that both cytosolic and organellar catalases are the products of a single ctt1+ gene. Western bolt analysis revealed two catalase bands, both of which disappeared in the ctt1Δ mutant. The major, fastermigrating band existed in the cytosol whereas the monor, slower-migrating band appeared to be located in organelles, most likely in peroxisomes. These results suggest that the ctt1+ gene product targeted to the peroxisome is a modified form of the one in the cytosol.

  • PDF

Inhibition of C-terminal O-Methyltransferase by a Rat Liver Cytosolic Peptide

  • Park, Seung-Hee;Lee, Hyang-Woo
    • Archives of Pharmacal Research
    • /
    • 제17권5호
    • /
    • pp.354-359
    • /
    • 1994
  • The activity of SD-framesylcysteine O-methyltransferase was assayed by incubating the enzyrne with a synthetic in vitro substrate, [N-acetyl-S-trans, trns-famesyl-L-cysteine (AFC)], together with S-adenosyl-L-[emthyl-$_{14}$C)ester(AFCME)], was then analyzed either directly on HPLC or by converting the AFC[$methyl^{14}C$]ME to [$methyl^{14}C$] aclcohol by basehydrolysis. Employing these two analytical methods, it was established that a peptide purifed from rat liver cytosol fraction [Int. J. Biochem., 25, 1157 919930] strongly inhibited the above enzyme activity with $IC_{50}\; of\; 7.1\times 10^{-8}$ M. Also, the S-famesylcysteine O-methyltransferase from several human colon cancer cells was equally inhibited by the peptide.

  • PDF

Na,K-ATPase와 IgE-Dependent Histamine Releasing Factor의 결합에 영향을 미치는 Protein Kinase C Isotype에 관한 연구 (PKC Isotype that Affects the Interaction of HRF with Na, K-ATPase)

  • 손원주;이경림
    • 한국미생물·생명공학회지
    • /
    • 제33권4호
    • /
    • pp.260-266
    • /
    • 2005
  • 본 실험에서는 MRF가 다량 존재하는 RBL-2H3 세포주에 다양한 PKC isotype별 억제제를 처리하여 in vitro상에서 Na, K-ATPase $\alpha$1L3를 이용한 pull-down assay와 RBL-2H3 세포를 이용한 membrane fractionation을 실시하였다. 그 결과 HRF는 in vitro에서 $\alpha$1L3와 결합한다는 사실을 재확인 할 수 있었고 실제 세포주 내에서 Na,K-ATPase와 결합한다는 것을 알 수 있었다. 사용한 약물로부터 PKC $\alpha,\;\beta,\;\delta$뿐 아니라 protein phosphatase 2B(PP2B)도 HRF와 $\alpha$1L3의 결합에 관여한다는 사실을 알 수 있었다. 또한 이들 PKC, PP2B에 의해 인산화된 HRF 분자는 cytosolic fraction으로 이행할 수 있으며 이러한 결과는 탈인산화된 HRF가 Na,K-ATPase와 결합하여 Na, K-ATPase의 기능을 조절한다고 추정할 수 있다. 그러나 약물자체가 histamine 분비에 영향을 미칠 수 있으며 cytosolic HRF보다 exocytosis된 HRF가 histamine를 더 분비하도록 할 수 있으므로, 약물을 전처리한 세포에 외부에서 HRF를 첨가하여 histamine이 유리되는 정도가 어떻게 변화하는지를 HRF를 가하지 않은 결과와 비교해야 할 것이다.

Changes in Ovarian and Placental 20α-hydroxysteroid Dehydrogenase Activity during the Pregnancy in the Rat

  • Seong, H.H.;Min, K.S.;Kang, M.H.;Yoon, J.T.;Jin, H.J.;Chung, H.J.;Chang, W.K.;Yun, S.G.;Shiota, Kunio
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제16권3호
    • /
    • pp.342-347
    • /
    • 2003
  • The enzyme $20{\alpha}$-hydroxysteroid dehydrogenase ($20{\alpha}$-HSD) catabolizes progesterone to $20{\alpha}$-dihydroprogesterone ($20{\alpha}$-OHP), and is appeared in rat corpora luteal and placenta. A polled samples of 10-15 placental and ovarian tissues collected from each individual rat were subjected to measurement of $20{\alpha}$-HSD activity. A $20{\alpha}$-HSD activity in the cytosol fraction was based on the generation of NADPH. In this study, it is designed to study cytosolic $20{\alpha}$-HSD activity in rat ovarian and placenta during pregnancy, and its relationship to embryonic mortality. It was found that from days 5 to 18 of pregnancy the $20{\alpha}$-HSD activities steady by decreased but at parturition time rapidly increased in ovary. On the other hand, placental cytosolic $20{\alpha}$-HSD activities were high detected from days 8 to 10 of pregnancy, not detectable from days 11 to 20 of pregnancy, but again very high at the time of parturition. Analysis of DEAE column chromatography revealed that two different types of $20{\alpha}$-HSD (HSD-1 and HSD-2) were found with similar activity in the placental cytosol on day 10 of pregnancy. The number of fetuses on day 10 of pregnancy was 15.4 and decreased significantly to 12.9 on day 12. The results suggested that expression of $20{\alpha}$-HSD in the placental tissues seems to be related the number of fetal survived in the specific time (days 11 and 12) which spontaneous fetal loss occurs.

Proteomic Analysis of the Increased Proteins in Peroxiredoxin II Deficient RBCs

  • Yang, Hee-Young;Lee, Tae-Hoon
    • Reproductive and Developmental Biology
    • /
    • 제36권1호
    • /
    • pp.55-64
    • /
    • 2012
  • Peroxiredoxin II (Prdx II; a typical 2-Cys Prdx) has been originally isolated from erythrocytes, and its structure and peroxidase activity have been adequately studied. Prdx II has been reported to protect a wide range of cellular environments as antioxidant enzyme, and its dysfunctions may be implicated in a variety of disease states associated with oxidative stress, including cancer and aging-associated pathologies. But, the precise mechanism is still obscure in various aspects of aging containing ovarian aging. Identification and relative quantification of the increased proteins affected by Prdx II deficiency may help identify novel signaling mechanisms that are important for oxidative stress-related diseases. To identify the increased proteins in Prdx $II^{-/-}$ mice, we performed RBC comparative proteome analysis in membrane fraction and cytosolic fractions by nano-UPLC-$MS^E$ shotgun proteomics. We found the increased 86 proteins in membrane (32 proteins) and cytosolic (54 proteins) fractions, and analyzed comparative expression pattern in healthy RBCs of Prdx $II^{+/+}$ mice, healthy RBCs of Prdx $II^{-/-}$ mice, and abnormal RBCs of Prdx $II^{-/-}$ mice. These proteins belonged to cellular functions related with RBC lifespan maintain, such as cellular morphology and assembly, cell-cell interaction, metabolism, and stress-induced signaling. Moreover, protein networks among the increased proteins were analyzed to associate with various diseases. Taken together, RBC proteome may provide clues to understand the clue about redox-imbalanced diseases.

Characterization of Protein Arginine Methyltransferases in Porcine Brain

  • Hung, Chien-Jen;Chen, Da-Huang;Shen, Yi-Ting;Li, Yi-Chen;Lin, Yi-Wei;Hsieh, Mingli;Li, Chuan
    • BMB Reports
    • /
    • 제40권5호
    • /
    • pp.617-624
    • /
    • 2007
  • Protein arginine methylation is a posttranslational modification involved in various cellular functions including cell signaling, protein subcellular localization and transcriptional regulation. We analyze the protein arginine methyltransferases (PRMTs) that catalyze the formation of methylarginines in porcine brain. We fractionated the brain extracts and determined the PRMT activities as well as the distribution of different PRMT proteins in subcellular fractions of porcine brain. The majority of the type I methyltransferase activities that catalyze the formation of asymmetric dimethylarginines was in the cytosolic S3 fraction. High specific activity of the methyltransferase was detected in the S4 fraction (high-salt stripping of the ultracentrifugation precipitant P3 fraction), indicating that part of the PRMT was peripherally associated with membrane and ribosomal fractions. The amount and distribution of PRMT1 are consistent with the catalytic activity. The elution patterns from gel filtration and anion exchange chromatography also indicate that the type I activity in S3 and S4 are mostly from PRMT1. Our results suggest that part of the type I arginine methyltransferases in brains, mainly PRMT1, are sequestered in an inactive form as they associated with membranes or large subcellular complexes. Our biochemical analyses confirmed the complex distribution of different PRMTs and implicate their regulation and catalytic activities in brain.

Farnesylcysteine Methyltransferase Activity and Ras Protein Expression in Human Stomach Tumor Tissue

  • Han, Eui-Sik;Oh, Hye-Young;Ha, Kwang-Won;Han, Beom-Seok;Hong, Seok-Min;Han, Jung-Whwan;Hong, Sung-Youl;Noh, Sung-Hun;Lee, Hyang-Woo
    • Archives of Pharmacal Research
    • /
    • 제21권4호
    • /
    • pp.378-384
    • /
    • 1998
  • The processing pathway of G-proteins and Ras family proteins includes the isoprenylation of the cysteine residue, followed by proteolysis of three terminal residues and .alpha.-carboxyl methyl esterification of the cysteine residue. Farnesylcysteine methyltransferase (FCMT) activity is responsible for the methylation reaction which play a role in the membrane attachment of a variety of cellular proteins. Four kinds of Ras protein (c-Ha-ras, c-N-Ras, c-Ki-Ras, pan-Ras) expression were detected in adenocarcinoma of human tissue by immunohistochemical method, and hematoxylin and eosin staining. The level of Ras protein in human stomach tumor tissues was much higher than in normal and peritumoral regions of the same biopsy samples. The FCMT activities of each cellular fractions were high in mitochondrial fraction followed by microsomal fraction, whole homogenate and cytosolic fraction. The inhibitory effect on FCMT activity on stomach tumor tissue was determined after treatment with 0.25 $\mu\textrm{M}$ of S-adenosyl-$_L$-homocysteine. S-adenosyl-$_L$-homocysteine inhibited FCMT activity from 11.2% to 30.5%. These results suggested that FCMT might be involved in Ras proteins activity.

  • PDF