• Title/Summary/Keyword: cytoplast

Search Result 18, Processing Time 0.031 seconds

The effect of maintenance period of non-resorbable membrane on bone regeneration in rabbit calvarial defects (가토 두개골 결손부에서 비흡수성 차단막의 유지 기간에 따른 골조직 형성효과)

  • Jung, Min-Gu;Jang, Hyun-Seon;Kim, Byung-Ock
    • Journal of Periodontal and Implant Science
    • /
    • v.37 no.3
    • /
    • pp.543-551
    • /
    • 2007
  • When clinicians faced with an insufficient volume of supporting bone on ideally esthetic and bio-mechanical position for dental implantation, guided bone regeneration(GBR) was indicated. Although GBR has wide application at clinic, proper time of membrane removal remains qustionable in using non-resorbable membrane, such as non-expanded polytetrafluoroethylene(PTFE), The aim of this study was to compare the effect of maintenance period of PTFE membrane on bone regeneration in rabbit calvarial defects. Eight adult New Zealand white female rabbits were used in this study. Four defects were surgically made in their calvaria. Using a trephine bur, 4 'through and through' defects were created and classified into 3 groups, which were consisted of control group(no graft), experimental group 1(autogenous bone)and experimental group 2(deproteinized bovine bone; $OCS-B^{(R)}$). The defects were covered with PTFE membrane($Cytoplast^{(R)}$). Membranes were removed after 1, 2, 4 and 8 weeks post-GBR procedure in 2 rabbits repectively, All rabbits were sacrificed after 8 week post-GBR procedure. Specimens were harvested and observed histologically. The results were as follow; 1) The use of graft material and membrane was necessary in GBR procedure. 2) When PTFE membranes were removed early, the most favorable bone regeneration was revealed in experimental group T, followed by experimental group II and control group. 3) On GBR, it is recommended that membrane should maintain for 4 weeks with autogenous graft. As well, the use of xenograft need longer maintenance period than autogenous bone. Further evaluations will be needed, such as histomorphologic research, more species and different kinds of graft materials. And on the basis of these studies, clinical researches would be required.

Guided bone regeneration using two types of non-resorbable barrier membranes (두 가지 유형의 비흡수성 차단막을 이용한 골유도재생술의 비교연구)

  • Lee, Ji-Young;Kim, Young-Kyun;Yun, Pil-Young;Oh, Ji-Su;Kim, Su-Gwan
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.36 no.4
    • /
    • pp.275-279
    • /
    • 2010
  • Introduction: Guided bone regeneration (GBR) is a common procedure for the treatment of bone defects and bone augmentation. The nonresorbable barriers are well-documented barriers for GBR because of their stability and malleability. However, few GBR studies have focused on the different types of non-resorbable barriers. Therefore, this study examined the clinical results of different non-resorbable barriers for GBR; expanded polytetrafluoroethylene (e-PTFE) (TR-Gore Tex, Flagstaff, AZ, USA), and high-density polytetrafluoroethylene (d-PTFE) (Cytoplast membrane, Oraltronics, Bremen, Germany). Materials and Methods: The analysis was performed on patients treated with GBR and implant placement from January 2007 to October 2007 in the department of the Seoul National University Bundang Hospital. The patients were divided into two groups based on the type of non-resorbable barrier used, and the amount of bone regeneration, marginal bone resorption after prosthetics, implant survival rate and surgical complication in both groups were evaluated. Results: The implants in both groups showed high survival rates, and the implant-supported prostheses functioned stably during the follow-up period. During the second surgery of the implant, all horizontal defects were filled with new bone, and there was no significant difference in the amount of vertical bone defect. Conclusion: In bone defect areas, GBR with non-resorbable barriers can produce favorable results with adequate postoperative management. There was no significant difference in bone regeneration between e-PTFE and d-PTFE.

Correlation of Oct4 and FGF4 Gene Expression on Peri-implantation Bovine Embryos Reconstructed with Somatic Cell

  • K. S. Chung;Yoon, B. S;S. J. Song;Park, Y. J.;S. B. Hong;Lee, H. T.
    • Korean Journal of Animal Reproduction
    • /
    • v.26 no.4
    • /
    • pp.329-338
    • /
    • 2002
  • This study was carried out to investigate the developmental rates of embryo reconstructed with different cell type and to estimate correlation of transcriptional level of octamer-binding transcription factor 4 (Oct4) and fibroblast growth factor 4 (FCF4) gene on peri-implantation stage embryos. Donor cells were transferred into perivitelline space of enucleated oocytes. The karyoplast-cytoplast couplets were accom- plished by cell to cell fusion and activated with ionomycin and 6-dimethylaminopurine. Reconstructed embryos were co-cultured with bovine oviduct epithelial cells in CR 1 aa medium. There is no difference in blastocyst formation rate following nuclear transfer UT) with fetal fibroblast cell (16/50; 32.0%), cumulus cell (16/49; 32.6%) and ear cell (17/52; 32.6%). The expression level of Oct4 and FCF4 in peri-implantation bovine embryo derived from in vitro fertilization (IVF) and NT were determined by reverse-transcription polymerase chain reaction (RT-PCR) technique. In peri-implantation of IVF result in a transient increased of FCF4 paralleled by an increased expression of Oct4. However, Oct4 gene was highly expressed in hatching blastocysts derived from NT compared to IVF. Also, FGF4 expression level in hatching blastocysts and outgrowth stage derived from NT was lower than that of IVF. In conclusion, it is suggested that the different transcription patterns observed in nuclear transfer embryos may lead to a lower rate of embryo development, implantation and pregnancy.

Cats Cloned from Fetal Fibroblast Cells by Nuclear Transfer

  • Yin, X.J.;Lee, H.S.;Lee, Y.H.;Hwang, W.S.;Kong, I.K.
    • Proceedings of the Korean Society of Embryo Transfer Conference
    • /
    • 2004.10a
    • /
    • pp.26-31
    • /
    • 2004
  • This work was undertaken in order to study the developmental competence of nuclear transfer cat embryo with fetal fibroblast and adult skin fibroblast as donor nuclei. Oocytes wererecovered by mincing the ovaries in Hepes-buffered TCM199 and selected the cumulus oocyte complexes (COCs) with compact cumulus cell mass and dark. Homogenous ooplasm were cultured for maturation in TCM199 + 10% fetal bovine serum (FBS) for 12 hours and used as a source of recipient cytoplast for exogenous somatic nuclei. In Experiment 1, we evaluated the effect donor cell types on the reconstruction and development of cloned embryos. Fusion, first cleavage and blastocyst developmental rate was not different between fetal fibroblast and adult skin cell (71.2 vs. 66.8; 71.0 vs. 57.6; 4.0 vs. 6.1 %, P<0.05). In Experiment 2, cloned embryos were surgically transferred into the oviducts of recipient queens. One of seven recipient queens was delivered naturally 2healthy cloned cats and 1 stillborn from fetal fibroblast cell of male origin after 65 days embryo transfer. One of three recipient queens was delivered naturally 1 healthy cloned cat from adult skin cell of female after 65 days embryo transfer. The cloned cats showed genotypes identical to the donor cell lines, indicating that adult somatic cells can be used for feline cloning.

  • PDF

Effect of Equine Chorionic Gonadotropin and Porcine Follicle-Stimulating Hormone on Oocyte Maturation and Embryonic Development after Parthenogenesis and Nuclear Transfer in Pigs (체외성숙 배양액에 첨가된 eCG 및 돼지 FSH가 돼지 미성숙 난자의 체외성숙과 단위 발생 및 핵이식 난자의 체외발육에 미치는 영향)

  • You, Jin-Young;Jeong, Chan-Woo;Kim, Jin-Young;Lee, Eun-Song
    • Journal of Embryo Transfer
    • /
    • v.24 no.3
    • /
    • pp.213-220
    • /
    • 2009
  • The objective of this study was to examine the effect of eCG and various concentrations (20, 40, and 80 ${\mu}g/ml$) of porcine FSH on nuclear maturation and intracellular glutathione (GSH) level of oocytes, and embryonic development after parthenogenetic activation (PA) and somatic cell nuclear transfer (SCNT) in pigs. Immature pig oocytes were matured in TCM-199 supplemented with porcine follicular fluid, cysteine, pyruvate, EGF, insulin, and hormones (10 IU/ml hCG and 10 IU/ml eCG or $20{\sim}80{\mu}g/ml$ FSH) for the first 22 h and then further cultured in hormone-tree medium for an additional 22 h. Nuclear maturation of oocytes ($85{\sim}89%$) was not influencem foreCG and various concentrations FSH. Embryonic development to the cleavage stage ($86{\sim}94%$) and mean number of cells in blastocyst ($33{\sim}37$ cells) after PA were not altered but blastocyst formation e-treignificaddlor(p<0.05) improvem forthe supplementation eith 80 ${\mu}g/ml$ FSHr(64%) compared to 47%, io8%, iand 47% in oocytes that were treated with eCG, 20,i and 40 ${\mu}g/ml$ FSH,i numectivelo. In SCNT, fusion ($78{\sim}83%$) of cell-cytoplast couplets and siosequent embryo cleavage ($82{\sim}88%$) were not influencem fordifferent gonadotropins but blastocyst formation tended to increase forthe supplementation eith 80 ${\mu}g/ml$ FSHr(25% vs. $11{\sim}18%$). Our nuults demonstrated that oocyte maturation and embryonic development after PA and SCNT e-frinfluencem fortype of gcem fortype of gits concentration. In this study, supplementation of maturation medium eith 80 ${\mu}g/ml$ FSHrimproved preimplantation development of PA and SCNT pig embryos, probably by increasing intracellular GSH concentration of matured oocytes.

Optimization of Electrofusion Condition for the Production of Korean Cattle Somatic Cell Nuclear Transfer Embryos

  • Kim, Se-Woong;Kim, Dae-Hwan;Jung, Yeon-Gil;Roh, Sang-Ho
    • Reproductive and Developmental Biology
    • /
    • v.35 no.1
    • /
    • pp.17-22
    • /
    • 2011
  • This study was designed to determine the effect of electric field strength, duration and fusion buffer in fusion parameters on the rate of membrane fusion between the somatic cell and cytoplast for Korean cattle (HanWoo) somatic cell nuclear transfer (SCNT) procedure. Following electrofusion, effect of 5 or $10\;{\mu}M$ $Ca^{2+}$-ionophore of activation treatment on subsequent development was also evaluated. Cell fusion rates were significantly increased from 23.1% at 20 V/mm to 59.7% at 26 V/mm and 52.9% at 27 V/mm (p<0.05). Due to higher cytoplasmic membrane rupture or cellular lysis, overall efficiency was decreased when the strength was increased to 30 V/mm (18.5%) and 40 V/mm (6.3%) and the fusion rate was also decreased when the strength was at 25 V/mm or below. The optimal duration of electric stimulation was significantly higher in $25\;{\mu}s$ than 20 and $30\;{\mu}s$ (18.5% versus 9.3% and 6.3%, respectively, p<0.05). Two nonelectrolyte fusion buffers, Zimmermann's (0.28 M sucrose) and 0.28 M mannitol solution for cell fusion, were used for donor cell and ooplast fusion and the fusion rate was significantly higher in Zimmermann's cell fusion buffer than in 0.28 M mannitol (91.1% versus 48.4%, respectively, p<0.05). The cleavage and blastocyst formation rates of SCNT bovine embryos activated by $5\;{\mu}M$ $Ca^{2+}$-ionophore was significantly higher than the rates of the embryos activated with $10\;{\mu}M$ of $Ca^{2+}$-ionophore (70.0% versus 42.9% and 22.5% versus 14.3%, respectively; p<0.05). This result is the reverse to that of parthenotes which shows significantly higher cleavage and blastocyst rates in $10\;{\mu}M$ $Ca^{2+}$-ionophore than $5\;{\mu}M$ counterpart (65.6% versus 40.3% and 19.5% versus 9.7%, respectively; p<0.05). In conclusion, SCNT couplet fusion by single pulse of 26 V/mm for $25\;{\mu}s$ in Zimmermann's fusion buffer followed by artificial activation with $5\;{\mu}M$ $Ca^{2+}$-ionophore are suggested as optimal fusion and activation methods in Korean cattle SCNT protocol.

Effect of Cell Cycle Stage on the Development of Embryos Produced by Cumulus Cell Nuclear Transfer in Hanwoo (Korean Cattle)

  • Im, G.S.;Yang, B.S.;Yang, B.C.;Chang, W.K.;Yi, Y.J.;Park, C.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.6
    • /
    • pp.759-764
    • /
    • 2001
  • This study was carried out to investigate the effect of activation timing, cell cycle and passage on the development of embryos produced by cumulus cell nuclear transfer in Hanwoo (Korean cattle). Nuclear donor cumulus cells were cultured in Dulbecco's modified Eagle medium supplemented with 10% fetal bovine serum at $38.5^{\circ}C$ in a humidified atmosphere of 5% $CO_2$ in air. The 1~6 passages of serum deprived or actively dividing cumulus cells were isolated and used as donor cells. The in vitro matured oocytes were enucleated and then the isolated donor cells were introduced. One pulse of 180 volts for $15{\mu}s$ was applied to induce the fusion between karyoplast and cytoplast. The activation was done before or after the fusion. To activate, oocytes were treated with $10{\mu}M$ calcium ionophore for 5 min immediately followed by 2 mM 6-dimethylaminopurine for 3 h. The nuclear transfer embryos were cultured in $500{\mu}l$ of modified CRlaa supplemented with 3 mg/ml BSA in four well dish covered with mineral oil. After 3 days culture, culture medium was changed into modified CRlaa medium containing 1.5 mg/ml BSA and 5% FBS for 4 days. The incubation environment was 5% $CO_2$, 5% $O_2$, 90% $N_2$ at $38.5^{\circ}C$. There was no blastocyst formation when the nuclear transfer embryos were activated before the fusion, whereas, 29.9% of blastocyst formation was shown when the nuclear transfer embryos were activated after the fusion. When serum deprived and actively dividing cumulus cells were used as nuclear donor cells, the developmental rates to blastocyst were 38.5% and 40.6%, respectively. There was no significant difference between serum deprived and actively dividing cells in the developmental rates. The developmental rates to blastocyst according to 1~6 passages were 37.5~44.4%. However, there were no significant differences among passages. These results indicate that 1~6 passage cumulus cell irrespective of cell cycle could support development of nuclear transfer embryos activated after the fusion.

Effect of Protein Supplementation, O2 Concentration and Co-Culture on the Development of Embryos Produced by Nuclear Transfer Using Cultured Cumulus Cells in Hanwoo (Korean Cattle)

  • Im, G.S.;Yang, B.S.;Park, S.J.;Im, S.K.;Yang, B.C.;Yi, Y.J.;Park, C.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.9
    • /
    • pp.1260-1266
    • /
    • 2001
  • The effect of protein supplementation, $O_2$ concentration and co-culture on the development of embryos produced by nuclear transfer using cultured cumulus cell was investigated. Recipient oocytes and cumulus cells were obtained from the ovaries of the slaughtered Hanwoo cows. Donor cumulus cells were cultured in Dulbecco's modified Eagle medium containing 10% fetal bovine serum at 5% $CO_2$ in air at $38.5^{\circ}C$. The 1 to 6 passages of cumulus cells were isolated and used as donor cells. The in vitro matured oocytes were enucleated and then the isolated donor cells were introduced. One $15{\mu}s$ pulse of 180 volts was applied to induce the fusion between karyoplast and cytoplast. The fused embryos were activated with $10{\mu}M$ calcium ionophore for 5 min and 2 mM 6-dimethylaminopurine for 3 h. To examine the effect of protein supplementation, nuclear transfer (NT) embryos were cultured in one of the following 4 treatments : 1) CR1aa + 3 mg/ml BSA for 7 days ; 2) CR1aa + 10% FBS for 7 days ; 3) CR1aa + 1.5 mg/ml BSA + 5% FBS for 7 days ; and 4) CR1aa + 3 mg/ml BSA for first 3 days and then CR1aa + 1.5 mg/ml BSA + 5% FBS for 4 days. Culture took place at 5% $CO_2$, 5% $O_2$ and 90% $N_2$ at $38.5^{\circ}C$. Although there were no significant differences in cleavage rate among different protein supplements, the rates of blastocyst formation were significantly different. When NT embryos were cultured in the medium supplemented with only BSA, they could develop to only morula not to blastocyst. However, when FBS was supplemented, NT embryos developed to blastocyst stage. In order to investigate the effect of $O_2$ concentration and co-culture, NT embryos were cultured in CR1aa + 1.5 mg/ml BSA + 5% FBS with or without cumulus cell co-culture at an atmosphere of 5% $CO_2$ in air (20% $O_2$) or 5% $CO_2$, 5% $O_2$, 90% $N_2$ (5% $O_2$) at $38.5^{\circ}C$ for 7 days. The percentage of blastocyst development was significantly higher when the NT embryos were cultured at an atmosphere of 5% $O_2$ than that of 20% $O_2$ (p<0.05). However, there was no significant difference between with and without cumulus cell co-culture at an atmosphere of 5% $O_2$ or 20% $O_2$. Fifty embryos were transferred to 25 recipients and 5 recipients were pregnant at 100 days. From 5 pregnant cows, only one cow was delivered of female twin. In conclusion, the embryos reconstructed by enucleation of metaphase II oocytes and introduction of the cycling and quiescent cumulus donor cells in Hanwoo had developmental potential to term after embryo transfer to recipient cows.