• Title/Summary/Keyword: cytokines ($IL-1{\beta}$

Search Result 935, Processing Time 0.028 seconds

Effects of 18β-glycyrrhetinic acid on pro-inflammatory cytokines and neuronal apoptosis in the hippocampus of lipopolysaccharide-treated mice (18β-Glycyrrhetinic acid가 lipopolysaccharide에 의한 생쥐 뇌조직의 염증성 사이토카인과 해마신경세포 자연사에 미치는 영향)

  • Lee, Ji-Seung;Kwon, Man-Jae;Kweon, Su-Hyeon;Kim, Jeeho;Moon, Ji-Young;Cho, Yoon-Cheong;Shin, Jung-Won;Lee, Jong-Soo;Sohn, Nak-Won
    • The Korea Journal of Herbology
    • /
    • v.31 no.6
    • /
    • pp.73-81
    • /
    • 2016
  • Objectives : $18{\beta}$-Glycyrrhetinic acid (18betaGA) is an metabolite of glycyrrhizin in Glycyrrhiza (licorice). The present study investigated anti-inflammatory and anti-apoptosis effect of 18betaGA on the brain tissue of lipopolysaccharide (LPS)-treated C57BL/6 mice. Methods : 18betaGA was administered orally with low (30 mg/kg) and high (100 mg/kg) doses for 3 days prior to LPS (3 mg/kg) injection. Pro-inflammatory cytokines mRNA including tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$), interleukin (IL)-$1{\beta}$, IL-6, and inflammatory enzyme cyclooxygenase-2 (COX-2) mRNA were measured in the cerebral cortex, hippocampus, and hypothalamus tissue using real-time polymerase chain reaction at 24 h after the LPS injection. Histological changes of Cornu ammonis area 1 (CA1) neurons, Bax, Bcl-2, and caspase-3 expression in the hippocampus was also evaluated by immunohistochemistry and Western blotting method. Results : 18betaGA significantly attenuated the up-regulation of TNF-${\alpha}$, IL-$1{\beta}$, IL-6 mRNA, and COX-2 mRNA expression in the brain tissues induced by the LPS injection. 18betaGA also significantly attenuated the reductions of the thickness of CA1 and the number of CA1 neurons. The up-regulation of Bax protein expression in the hippocampal tissue by the LPS injection was significantly attenuated, while the ratio of Bcl-2/Bax expression was increased by 18betaGA treatment. 18betaGA also significantly attenuated the up-regulation of Bax and caspase-3 expression in the CA1 of the hippocampus. Conclusion : This results indicate that 18betaGA has anti-inflammatory and anti-apoptosis effect under neuroinflammation induced by the LPS injection and suggest that 18betaGA may be a beneficial drug for various brain diseases accompanied with the brain tissue inflammation.

Inhibition of $IL-1{\beta}$ and IL-6 in Osteoblast-Like Cell by Isoflavones Extracted from Sophorae fructus

  • Joo, Seong-Soo;Kang, Hee-Cheol;Choi, Min-Won;Choi, Young-Wook;Lee, Do-ik
    • Archives of Pharmacal Research
    • /
    • v.26 no.12
    • /
    • pp.1029-1035
    • /
    • 2003
  • Osteoporosis is recognized as one of the major hormonal deficiency diseases, especially in menopausal women and the elderly. When estrogen is reduced in the body, local factors such as IL-1 $\beta$ and IL-6, which are known to be related with bone resorption, are increased and promote osteoclastogenesis, which is responsible for bone resorption. In the present study, we investigated whether glucosidic isoflavones (Isocal, PIII) extracted from Sophorae fructus affect the proliferation of osteoblasts and prevent osteoclastogenesis in vitro by attenuating upstream cytokines such as IL-1$\beta$ and IL-6 in a human osteoblastic cell line (MG-63) and in a primary osteoblastic culture from SD rat femurs. Interestingly, IL-1$\beta$ and IL-6 mRNA were significantly suppressed in osteoblast-like cells treated with 17$\beta$-estradiol (E2) and PIII when compared to positive control (SDB), and this suppression was more effective at $10^{-8}$% than at the highest concentration of $10^{-4}$%. In addition, these were confirmed in protein levels using ELISA assay. In the cell line, the cells showed that E2 was the most effective in osteoblastic proliferation over the whole range of concentration ($10^{-4}%-10^{-12}$%), even though PIII also showed the second greatest effectiveness at $10^{-8}$%. Nitric oxide (NO) was significantly (p<0.05) upregulated in PIII and E2 over the concentration range $10^{-6}% to 10^{-8}$% when compared to SDB, without showing any dose dependency. In bone marrow primary culture, we found by TRAP assay that PIII effectively suppressed osteoclastogenesis next to E2 in comparison with SDB and culture media (control). In conclusion, these results suggest that local bone-resorbing cytokines can be regulated by PIII at lower concentrations and that, therefore, PIII may preferentially induce anti-osteoporosis response by attenuating osteoclastic differentiation and by upregulating NO.

The Effects of Dictamni Radicis Cortex on the iNOS Expression and Proinflammatory Cytokines Production (백선피의 iNOS발현과 염증성사이토카인의 생성에 미치는 영향)

  • Park, Jeong-Suk;Shin, Tae-Yong;Kim, Dae-Keun;Lee, Jae-Hyeok
    • Korean Journal of Pharmacognosy
    • /
    • v.42 no.4
    • /
    • pp.348-353
    • /
    • 2011
  • The aim of the present study is to investigate the cytokine production inhibitory effect of a Dictamni Radicis Cortex (DRC). DRC has been commonly used as important medicinal herb in China and it used to control eczema, atopic dermatitis, fever and inflammatory diseases. Inflammation, such as a bacterial infection in vivo metabolites, such as external stimuli or internal stimuli to the defense mechanisms of the biological tissue a variety of intracellular regulatory factors deulin inflammatory TNF-${\alpha}$, IL-$1{\beta}$, IL-6, IL-8, such as proinflammatory cytokines, prostagrandin, lysosomal enzyme, free radicals are involved in a variety of mediators. The present study was designed to determine the effect of the DRC on proinflammatory factors such as NO, iNOS expression and TNF-${\alpha}$, IL-$1{\beta}$, IL-6 in lipopolysaccharide (LPS) - stimulated RAW264.7 cells. The cell toxicity was determined by MTS assay. To evaluate of anti-inflammatory effect of DRC, amount of NO was measured using the NO detection kit and the iNOS expression was measured by reverse transcriptase polymerase chain reaction (RT-PCR). And proinflammatory cytokines were measured by ELISA kit. As a result, the DRC reduced NO, iNOS expression and TNF-${\alpha}$, IL-$1{\beta}$, IL-6 production without cytotoxicity. Our results suggest that the DRC may have an anti-inflammatory property through suppressing inflammatory mediator productions.

Effects of Auklandia Lappa on Dextran Sulfate Sodium-Induced Murine Colitis (당목향(唐木香)이 DSS(Dextran sulfate sodium)로 유발된 염증성 장질환 동물모델에 미치는 영향)

  • Kim, So-Yeon;Park, Jae-Woo;Ryu, Bong-Ha
    • The Journal of Internal Korean Medicine
    • /
    • v.34 no.2
    • /
    • pp.134-146
    • /
    • 2013
  • Objectives : Auklandia Lappa (ALE) is one of the herbs used frequently to treat abdominal pain and diarrhea and reported anti-inflammatory activity by suppressing proinflammatory cytokines. This study was designed to investigate whether ALE could show protective activities on experimental colitis induced by dextran sulfate sodium (DSS) models. Methods : Colitis was induced by DSS in Balb/c mice. ALE 10, 30, 100 and 300 mg/kg were orally administered twice a day for 7 days in DSS model. Mice weight was measured daily. Scoring of clinical findings was measured every other day. Colon length, edema, fecal blood and histological damages were assessed at day 7 in DSS model. In histological analysis, we checked cryptal glands, surface epithelium, submucosa, transmural, stroma and scored degree of inflammatory cell damage by modified histological scoring. We also calculated cytokines concentrations including IFN-${\gamma}$, TNF-${\alpha}$, IL-6, IL-$1{\beta}$, IL-17, IL-23, IL-10 and TGF-${\beta}1$ by Biometric Multiplex Cytokine Profiling method. Results : ALE showed the protective effects on DSS-induced experimental colitis. ALE inhibited shortening of colon length and histological damages of colon does-dependently, but it did not inhibit weight loss. ALE also inhibited IFN-${\gamma}$ and IL-6 expression, and upregulated cytokines (IL-10, TGF-${\beta}1$) related to regulatory T cell differentiation and proliferation. Conclusions : The current results demonstrate the clinical utility of ALE in traditional medicine and indicate the possibility of potent drug development of inflammatory bowel diseases from natural products. Further investigations for exact mechanisms will be needed.

Magnesium Sulfate Induced Toxicity in Vitro in AGS Gastric Adenocarcinoma Cells and in Vivo in Mouse Gastric Mucosa

  • Zhang, Xulong;Bo, Agula;Chi, Baofeng;Xia, Yuan;Su, Xiong;Sun, Juan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.1
    • /
    • pp.71-76
    • /
    • 2015
  • Magnesium sulfate is widely used as a food additive and as an orally administered medication. The aim of this study was to evaluate the possible cytotoxicity of magnesium sulfate on AGS human gastric adenocarcinoma cells and gastric mucosa in mice. A trypan blue exclusion assay was used to determine the reduction in viability of AGS cells exposed to magnesium sulfate, and then effects on cell proliferation were quantified. The role of magnesium sulfate-mediated pro-inflammatory cytokine production in AGS cells was also investigated. mRNA expression for IL-$1{\beta}$, IL-6, IL-8, and TNF-${\alpha}$ was determined by RT-PCR, and secretion of these cytokines was measured by ELISA. Immunohistochemical evaluation of IL-$1{\beta}$, IL-6, and TNF-${\alpha}$ expression was conducted in mouse gastric mucosa. Addition of 3 to 50 mM magnesium sulfate to AGS cells inhibited both cell proliferation and cell viability in a dose-dependent manner. Magnesium sulfate had little effect on production of IL-$1{\beta}$ or IL-6 but significantly inhibited production of IL-8. The animal model demonstrated that magnesium sulfate induced production of IL-$1{\beta}$, IL-6, and TNF-${\alpha}$. These preliminary data suggest that magnesium sulfate had a direct effect on the stomach and initiates cytotoxicity in moderate concentrations and time periods by inhibiting viability a nd proliferation of AGS cells and by regulating expression and/or release of pro-inflammatory cytokines.

Effect of Zingiber Officinale Roscoe Extracts on Mice Immune Cell Activation (생강 추출물 투여가 마우스 면역세포 활성에 미치는 영향)

  • 류혜숙;김현숙
    • Journal of Nutrition and Health
    • /
    • v.37 no.1
    • /
    • pp.23-30
    • /
    • 2004
  • Ginger (Zingiber officinale Roscoe) has been used as a raw material in many traditional preparations since the ancient time. As a component of traditional health products, Ginger is known to be effective as appetite enhancer, anticold and anti-inflammation. This study was performed to investigate the immunomodulative effects of Ginger in mouse, using in vitro and ex vivo experiments. In vitro experiment, the mice splenocytes proliferation and three kinds of cytokines (IL-1 $\beta$, IL-6, and TNF-$\alpha$) prodution by peritoneal macrophages cultured with ethanol and water extracts of Ginger were used to indicate the immunomodulative effect. In order to elucidate the immunomodulative effects of Ginger ex vivo, water extract of Ginger was orally administrated into mice, and isolated splencytes and macrophages were used as experimental model. Ex vivo experiment, six to seven week old mice were fed ad libitum on a chow diet, and water extract of finger was orally administrated every other day for four weeks at two different concentractions (50 and 500 mg/kg B.W./day). In vitro study, the splenocytes proliferation was increased when water extract was supplemented in the range of 50-500 $\mu$l/ml concentration. In case of cytokines production, IL-1 $\beta$, IL-6 and TNF-$\alpha$ released by activated peritoneal macrophages were augmented by the supplementation of water extract of the Ginger. Ex vivo experiment, the highest proliferation of splenocytes and production of cytokines by activated peritoneal macrophages were seen in the mice orally administrated at the concentration of 500 mg/kg B.W./day. In conclusion, this study suggests that Ginger extracts may enhance the immune function by regulating the splenocytes proliferation and enhancing the cytokine prodution capacity by activated macrophages in mice.

A Study on the Effects of Sunghyangjungkisan-ga-pogokyoung on In vitro Alzheimer's Disease Experimental Model (생체외(生體外) 알츠하이머병 실험(實驗) 모델에서 성향정기산가포공영(星香正氣散加蒲公英)의 효과(效果)에 관(關)한 연구(硏究))

  • Kang Hyung-Won;Lyu Yeoung-Su;Park Jin-Sung
    • Journal of Oriental Neuropsychiatry
    • /
    • v.12 no.2
    • /
    • pp.157-171
    • /
    • 2001
  • Astrocytes are glial cells that play a major role in the inflammation observed in Alzheimer's disease (AD). Upon stimulation from various agents, these cells adopt a reactive phenotype, a morphological hallmark in AD pathology, during which they themselves may produce still more inflammatory cytokines. Substance P (SP) can stimulate secretion of tumor necrosis $factor-\;{\alpha}$ $(TNF-\;{\alpha})$ from astrocytes stimulated with lipopolysaccharide (LPS). Here I report that Sunghyangjungkisan- ga- pogokyoung(Sgp) can modulate cytokines secretion from primary cultures of rat astrocytes. Sgp $(10\;to\;1000\;{\mu}g/ml)$ significantly inhibited the $TNF-\;{\alpha}$ secretion by astrocytes stimulated with LPS and SP. Interleukin-1 (IL-1) has been shown to elevate $TNF-\;{\alpha}$ secretion from LPS-stimulated astrocytes while having no effect on astrocytes in the absence of LPS. Treatment of Sgp $(10\;to\;1000\;{\mu}g/ml)$ to astrocytes stimulated with both LPS and SP decreased IL-1 secretion significantly. The secretion of $TNF-\;{\alpha}$ by LPS and SP in astrocytes was progressively inhibited with increasing amount of IL-1 neutralizing antibody. Neurodegenerative processes in AD are thought to be driven in part by the deposition of ${\beta}\;-amyloid\;(A\;{\beta})$, a 39- to 43-amino acid peptide product resulting from an alternative cleavage of amyloid precursor protein. Sgp $(10\;to\;1000\;{\mu}g/ml)$ significantly inhibited the $TNF-\;{\alpha}$ secretion by astrocytes stimulated with $A-{\beta}-$and IL-1. These results suggest that Sgp may inhibit $TNF-\;{\alpha}$ secretion by inhibiting IL-1 secretion and that Sgp has an antiinflammatory activity in AD brain

  • PDF

Intra-articular Injection of $IL-1{\beta}$ Facilitated Formalin-induced Temporomandibular Joint Pain in Freely Moving Rats

  • Choi, Hyo-Soon;Jung, Sung-Chul;Choi, Byung-Ju;Ahn, Dong-Kuk
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.9 no.1
    • /
    • pp.23-27
    • /
    • 2005
  • The present study was performed to investigate the effects of intra-articular injection of interleukin-1${\beta}$ (IL-1${\beta}$) on the formalin-induced temporomandibular joint (TMJ) pain. Under anesthesia, a 30-gauge needle was introduced into the right TMJ region for injection of formalin. Microinjection of 50 ${\mu}l$ of 5% formalin significantly produced noxious scratching behavioral response, and the scratching behavior lasted for 40 min. Although the responses produced by formalin injection were divided into two phases, the response of 1st phase did not significantly differ from the scratching behavior response in the saline-treated group. We examined the effects of intra-articular injection of IL-1${\beta}$ on the number of noxious behavioral responses produced by 50${\mu}l$ of 5% formalin injection. Intra-articular injection of 100 pg and 1 ng of IL-1${\beta}$ significantly increased the number of behavioral responses of the 2nd phase, while 10 pg of IL-1${\beta}$ did not change the formalin-induced behavioral responses. To investigate whether IL-1 receptor was involved in the intra-articular administration of IL-1${\beta}$-induced hyperalgesic response, IL-1 receptor antagonist (IL- ra, 50 ng) was administrated together with IL-1${\beta}$ injection. IL-1${\beta}$ receptor antagonist blocked IL-1${\beta}$- induced hyperalgesic response in the TMJ formalin test. These results suggest that intra-articular injection of IL-1${\beta}$ facilitated the transmission of nociceptive information in the TMJ area.

The Effects of Pro-inflammatory Cytokines by Cisplatin on the Death of Sensory Hair Cells. (시스플라틴에 의한 염증성 사이토카인의 청각유모세포 사멸 효과)

  • Lee, Jeong-Han;Park, Chan-Ny;Park, Rae-Kil
    • Journal of Life Science
    • /
    • v.18 no.4
    • /
    • pp.542-549
    • /
    • 2008
  • Cisplatin (cis-diamminedichloroplatinum II : CDDP) is the most widely used anticancer drug against a variety of human neoplasms. However, its clinical use is limited by the onset of severe side effects, including ototoxicity and nephrotoxicity. Even though a number of evidences in cytotoxic mechanism of cisplatin have been suggested, the role of pro-inflammatory cytokines in cisplatin cytotoxicity of auditory cells has not yet been demonstrated. Herein our data clearly demonstrated that cisplatin decreased the viability of HEI-OC1 auditory cells, which was inhibited by the addition of neutralizing $anti-TNF-{\alpha}$, $anti-IL-1{\beta}$ and anti-IL-6 antibodies. Consistently, Neutralization with antibodies against pro-inflammatory cytokines ameliorated the cell death and disarrangement of cochlea hair cell layers in the rat primary cochlear explants which were treated with cisplatin. Furthermore, exogeneous supplementation with free radical scavengers, including GSH and NAC, significantly prevented the cytotoxicity of cisplatin in the rat primary cochlea explants. We also observed that $TNF-{\alpha}$ was predominantly expressed in Deiters and Hensen's cells located in hair cell zone of cisplatin-treated cochlear explants. These findings suggest that pro-inflammatory cytokines, including $TNF-{\alpha}$, $IL-1{\beta}$ and IL-6, may play a pivotal role in the pathophysiology of hair cell damages caused by ototoxic drug cisplatin.

Effects of Indomethacin on the Production of Cytokines in Mice Exposed to Excessive Zinc (과량의 아연에 노출된 생쥐의 사이토카인 생산에 미치는 인도메타신의 영향)

  • 채병숙;신태용
    • YAKHAK HOEJI
    • /
    • v.46 no.4
    • /
    • pp.258-264
    • /
    • 2002
  • Zinc plays an important role in immunobiological responses, while excessive zinc attenuates immune functions in a dose-dependent manner. Zinc excess has been reported to increase levels of plasma prostaglandin E$_2$ (PGE$_2$), which is known to inhibit production of Th (helper T) 1-associated cytokines and to induce inflammatory responses. Thus, this study was investigated the effects of indomethacin, a potent inhibitor of PGE$_2$ synthesis, on the proinflammatory cytokine and lymphokine production in ICR mice exposed to excessive zinc. Indomethacin at doses of 5 mg/kg was administered i.p. 30 minutes before zinc chloride (Zn) 30 mg/kg orally daily for 10 days. Excessive Zn remarkedly increased tumor necrosis factor (TNF)-$\alpha$ and interleukin (IL)-1$\beta$ levels in both serum and splenic supernatants compared with those in controls, while indomethacin significantly reduced the excessive Zn-induced levels of IL-1$\beta$. In serum, excessive Zn significantly decreased the levels of IL-2 and interferon (IFN)-${\gamma}$ compared with those in controls, whereas indomethacin significantly enhanced the excessive Zn-decreased levels of IFN-${\gamma}$ but did not affect the Zn-decreased levels of serum IL-2. In splenic supernatants, All of excessive Zn, indomethacin, and combination of Zn and indomethacin significantly enhanced IL-2 levels compared with those in controls, but indomethacin didn't affect the Zn-induced production of IL-2. These data, therefore, suggest that indomethacin significantly attenuated the in vivo and ex vivo IL-1$\beta$ production increased by excessive zinc and remarkedly enhanced the in vivo excessive zinc-suppressed production of IFN-${\gamma}$ but not IL-2.