• Title/Summary/Keyword: cytochrome c-dependent caspase-3 activation

Search Result 89, Processing Time 0.038 seconds

HY251, a Novel Decahydrocyclopenta[a]indene Analog, Induces Apoptosis via tBid-Mediated Intrinsic Pathway in Human Ovarian Cancer PA-1 Cells

  • Suh, Hyewon;Choi, Ko-Woon;Kim, Myung Sic;Kim, Jeong Hyeon;Noh, Sun Young;Sung, Moon-Hee;Lee, Chul-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.11
    • /
    • pp.1591-1595
    • /
    • 2012
  • We previously isolated a novel compound, HY251, with the molecular structure of 3-propyl-2-vinyl-1,2,3,3a,3b,6,7,7a,8,8a-decahydrocyclopenta[a]indene-3,3a,7a,8a-tetraol from the roots of Aralia continentalis. The current study was designed to evaluate the detailed molecular mechanisms underlying the apoptotic induction by HY251 in human ovarian cancer PA-1 cells. TUNEL assay and Western blot analyses revealed an appreciable apoptotic induction in PA-1 cells treated with $60{\mu}M$ of HY251 for 24 h. This apoptotic induction was associated with caspase-8-dependent Bid cleavage, which in turn resulted in the formation of pro-apoptotic truncated Bid (tBid), and activation of caspase-9 and -3, as well as the cleavage of poly(ADP-ribose) polymerase (PARP). Moreover, we found that this death event was also associated with the significant up-regulation and activation of the p53 tumor-suppressor protein through phosphorylation at Ser15. Therefore, we suggest that HY251 may be a potent cancer chemotherapeutic candidate for the treatment of ovarian cancer.

Relationship between Reactive Oxygen Species and Adenosine Monophosphate-activated Protein Kinase Signaling in Apoptosis Induction of Human Breast Adenocarcinoma MDA-MB-231 Cells by Ethanol Extract of Citrus unshiu Peel (진피 추출물에 의한 인간유방암 MDA-MB-231 세포의 apoptosis 유도에서 ROS 및 AMPK의 역할)

  • Kim, Min Yeong;HwangBo, Hyun;Ji, Seon Yeong;Hong, Su-Hyun;Choi, Sung Hyun;Kim, Sung Ok;Park, Cheol;Choi, Yung Hyun
    • Journal of Life Science
    • /
    • v.29 no.4
    • /
    • pp.410-420
    • /
    • 2019
  • Citrus unshiu peel extracts possess a variety of beneficial effects, and studies on their anticancer activity have been reported. However, the exact mechanisms underlying this activity remain unclear. In the current study, the apoptotic effect of ethanol extract of C. unshiu peel (EECU) on human breast adenocarcinoma MDA-MB-231 cells and related mechanisms were investigated. The results showed that the survival rate of MDA-MB-231 cells treated with EECU was significantly inhibited in a concentration-dependent manner, which was associated with the induction of apoptosis. EECU-induced apoptosis was associated with the activation of caspase-8 and caspase-9, which initiate extrinsic and intrinsic apoptosis pathways, respectively, and caspase-3, a representative effect caspase. EECU suppressed the expression of the inhibitor of apoptosis family of proteins, leading to an increased Bax/Bcl-2 ratio and proteolytic degradation of poly (ADP-ribose) polymerase. EECU also enhanced the loss of the mitochondrial membrane potential and cytochrome c release from the mitochondria to the cytosol, along with truncation of Bid. In addition, EECU activated AMP-activated protein kinase (AMPK), and compound C, an AMPK inhibitor, significantly weakened EECU-induced apoptosis and cell viability reduction. Furthermore, EECU promoted the generation of reactive oxygen species (ROS), which acted as upstream signals for AMPK activation as pretreatment of cells, with the antioxidant N-acetyl cysteine reversing both EECU-induced AMPK activation and apoptosis. Collectively, these findings suggest that EECU inhibits MDA-MB-231 adenocarcinoma cell proliferation by activating intrinsic and extrinsic apoptotic pathways, which was mediated through ROS/AMPK-dependent pathways.

Effect of Epigallocatechin Gallate on Phosphoinositide 3-kinase/Akt and Glycogen Synthase Kinase-3 Pathway in Oxidative-stressed N18D3 Cells Following $H_2O_2$ Exposure (산화성 손상을 받은 N18D3세포에서 Epigallocatechin gallate가 Phosphoinositide 3-kinase/Akt 및 Glycogen synthase kinase-3경로에 미치는 효과)

  • Koh, Seong Ho;Kwon, Hyug Sung;Oh, Hwa Soon;Oh, Jae Ho;Park, Ynun Joo;Kim, Jun Gyou;Kim, Ki Sok;Kim, Yang Soon;Yang, Ki Hwa;Kim, Seung U.;Kim, Seung H.;Jung, Hai Kwu
    • Korean Journal of Clinical Pharmacy
    • /
    • v.13 no.1
    • /
    • pp.29-39
    • /
    • 2003
  • Neurodegenerative disorders are associated with apoptosis as a causing factor or an inducer. On the other hand, it has been reported that epigallocatechin gallate (EUG), one of antioxidants and flavonoids, and z-VAD-fmk, a nonselective caspase inhibitor, suppress oxidative-radical-stress-induced apoptosis. However, it is not yet known what is the effects of EGCG and z-VAD-fmk on the apoptotic pathway is through phosphoinositide 3-kinase (PI3K), Akt and glycogen synthase kinase-3 (GSK-3) as well as mitochondria, caspase-3 and poly (ADP-ribose) polymerase (PARP). We investigated the effects of EGCG by using $H_2O_2$ treated N18D3 cells, mouse DRG hybrid neurons. Methods: Following 30 min $100\;{\mu}m\;H_2O_2$ exposure, the viability of N18D3 cells (not pretreated vs. EGCG or z-VAD-fmk pretreated) was evaluated by using MTT assay. The effect of EGCG on immunoreactivity (IR) of cytochrome c, caspase-3, PARP, PI3K/Akt and GSK-3 was examined by using Western blot, and was compared with that of z-Y4D-fmk. Results: EGCG or z-VAD-fmk pretreated N18D3 cells showed increased viability. Dose-dependent inhibition of caspase-3 activation accompanied by PARP cleavage were demonstrated by pretreatment of both agents. However, inhibition of cytochrome c release was only detected in EGCG pretreated N18D3 cells. On the pathway through PI3K/Akt and GSK-3, however, the result of Western blot in EGCG pretreated N18D3 cells showed decreased IR of Akt and GSK-3 and increased IR of p85a PI3K, phosphorylated Akt and GSK-3, and contrasted with that in z-VAD-fmk pretreated N18D3 cells showing no changes on each molecule. Conclusion: These data show that EGCG affects apoptotic pathway through upstream signal including PI3K/Akt and GSK-3 pathway as well as downstream signal including cytochrome c and caspase-3 pathway. Therefore, these results suggest that EGCG mediated activation of PI3K/Akt and inhibition GSK-B could be new potential therapeutic strategy for neurodegenerative diseases associated with oxidative injury.

  • PDF

Inactivated Sendai Virus Strain Tianjin Induces Apoptosis in Human Breast Cancer MDA-MB-231 Cells

  • Chen, Jun;Han, Han;Chen, Min;Xu, Xiao-Zhu;Wang, Bin;Shi, Li-Ying
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.12
    • /
    • pp.5023-5028
    • /
    • 2014
  • Sendai virus strain Tianjin is a novel genotype. Here, we investigate the antitumor and proapoptotic effects of ultraviolet-inactivated Sendai virus strain Tianjin (UV-Tianjin) on human breast cancer MDA-MB-231 cells in vitro, as well as the involvement of the apoptotic pathway in the mechanism of UV-Tianjin-induced antitumor effects. MTT assays showed that treatment with UV-Tianjin dose-dependently inhibited the proliferation of MDA-MB-231 cells but not normal MCF 10A breast epithelium cells. Hoechst staining and flow cytometric analysis revealed that UV-Tianjin induced apoptosis of MDA-MB-231 cells in a dose-dependent manner. Moreover, UV-Tianjin treatment resulted in reduction in the mitochondria membrane potential (MMP) and release of cytochrome complex (cyt c) via regulation of Bax and Bcl-2, as well as activation of caspase-9, caspase-3, Fas, FasL and caspase-8 in MDA-MB-231 cells. In summary, our study suggests that UV-Tianjin exhibits anticancer activity in human breast cancer MDA-MB-231 cells through inducing apoptosis, which may involve both the endogenous mitochondrial and exogenous death receptor pathways.

Effect of Anemarrhenae Rhizoma Ethanol Extract on Apoptosis Induction of HT-29 Human Colon Cancer Cells (지모(知母)에탄올추출물의 HT-29대장암세포 Apoptosis 유도효과)

  • Kim, Tae-Hyun;Kim, Pom-Ho;Jeon, Byoung-Kook;Yoon, Jeong-Rock;Woo, Won-Hong;Mun, Yeun-Ja;Lee, Jang-Cheon;Lee, Boo-Kyun;Park, oung-Gue;Lim, Kyu-Sang
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.24 no.1
    • /
    • pp.16-24
    • /
    • 2011
  • Objective : In this study, we investigated the effects of ethanol extract of Anemarrhenae Rhizoma (EAR) on the proliferation and apoptosis induction of HT-29 human colon cancer cells. Methods : Cell viability of HT-29 cells were measured by MTT assay and apoptisis-related proteins were assessed using western blotting. Chromatin condensation of HT-29 cells stained with Hoechst 33258. Results : In the present study, we demonstrated that EAR exhibited significant cytotoxicity in HT-29 cells. The induction of apoptosis in HT-29 cells by EAR treatment was characterized by chromatin condensation and the activation of caspase-3. EAR-induced apoptosis is accompanied by the release of cytochrome c and the specific proteolytic cleavage of PARP. EAR was appeared cytotoxic effect to HT-29 cells in a dose-dependent manner. Concomitantly, EAR treatment led to increase in the caspase-9. The reduction of Bcl-2 and truncation of Bid were induced by EAR. Conclusion : We studied that the EAR induced apoptosis in human colon adenocarcinoma HT-29 cells. These results indicated that EAR can cause apoptosis through mitochondria/caspase pathway in human HT-29 cells.

Role of p-38 MAP Kinase in apoptosis of hypoxia-induced osteoblasts (저산소 상태로 인한 조골세포 고사사기전에서 p-38 MAP kinase의 역할에 관한 연구)

  • Yoon, Jeong-Hyeon;Jeong, Ae-Jin;Kang, Kyung-Hwa;Kim, Sang-Cheol
    • The korean journal of orthodontics
    • /
    • v.33 no.3 s.98
    • /
    • pp.169-183
    • /
    • 2003
  • Tooth movement by orthodontic force effects great tissue changes within the periodontium, especially by shifting the blood flow in the pressure side and resulting in a hypoxic state of low oxygen tension. The aim of this study is to elucidate the possible mechanism of apoptosis in response to hypoxia in MC3T3El osteoblasts, the main cells in bone remodeling during orthodontic tooth movement. MC3T3El osteoblasts under hypoxic conditions ($2\%$ orygen) resulted in apoptosis in a time-dependent manner as estimated by DNA fragmentation assay and nuclear morphology stained with fluorescent dye, Hoechst 33258. Pretreatment with Z-VAD-FMK, a pancaspase inhibitor, or Z-DEVD-CHO, a specific caspase-3 inhibitor, completely suppressed the DNA ladder in response to hypoxia. An increase in caspase-3-like protease (DEVDase) activity was observed during apoptosis, but no caspase-1 activity (YVADase) was detected. To confirm what caspases are involved in apoptosis, Western blot analysis was performed using anti-caspase-3 or -6 antibodies. The 10-kDa protein, corresponding to the active products of caspase-3, and the 10-kDa protein of the active protein of caspase-6 were generated in hypoxia-challenged cells in which the processing of the full length form of caspase-3 and -6 was evident. While a time course similar to this caspase-3 and -6 activation was evident, hypoxic stress caused the cleavage of lamin A, which was typical of caspase-6 activity. In addition, the stress elicited the release of cytochrome c into the cytosol during apoptosis. Furthermore, we observed that pre-treatment with SB203580, a selective p38 mitogen activated protein kinase inhibitor, attenuated the hypoxia-induced apoptosis. The addition of SB203S80 suppressed caspase-3 and -6-like protease activity by hypoxia up to $50\%$. In contrast, PD98059 had no effect on the hypoxia-induced apoptosis. To confirm the involvement of MAP kinase, JNK/SAPK, ERK, or p38 kinase assay was performed. Although p38 MAPK was activated in response to hypoxic treatment, the other MAPK -JNK/SAPK or ERK- was either only modestly activated or not at all. These results suggest that p38 MAPK is involved in hypoxia-induced apoptosis in MC3T3El osteoblasts.

Effect of Dangguibohyultang and its combinations on apoptosis in human colorectal adenocarcinoma HCT116 cells (당귀보혈탕(當歸補血湯)의 배합비율에 따른 대장암 세포주 HCT116의 세포사멸 효과)

  • Kim, Byung-Wan;Yun, Hyun-Joung;Jeon, Hyeon-Suk;Yun, Hyung-Joong;Kim, Chang-Hyun;Park, Sun-Dong
    • The Korea Journal of Herbology
    • /
    • v.21 no.2
    • /
    • pp.37-46
    • /
    • 2006
  • Objectives : The purpose of this study was to investigate the effect of Dangguibohyultang (DB) and its combination (DB-I; Astragali membraneus BUNGE : Angelica gigas NAKAI=5:1, DB-II; Astragali membraneus BUNGE:Angelica gigas NAKAI=1:1, DB-III; Astragali membraneus BUNGE:Angelica gigas NAKAI=1:5,) on apoptosis in human colorectal adenocarcinoma HCT116 cells. Methods : To study the cytotoxic effect of methanol extract of DB-I, DB-II and DB-III on HCT116 cells, the cell viability was determined by XTT reduction method and ttypan blue exclusion assay. To confirm the induction of apoptosis, the cleavage of poly ADP-ribose polymerase (PARP), a substrate for caspase-3 and a typical sign of apoptosis, and the activation of procaspase-3, -8 and -9 were examined by western blot analysis. Furthermore, DB-induced apoptosis was confirmed by DNA fragmentation. The release of cytochrome C from mitochondria to cytosol, the level of Bcl-2 and Bax, and the expressions of Raf/MEK/ERK were examined by western blot analysis. Results : DB-I and DB-II reduced proliferation of HCT116 cells in a dose-dependent manner. DB-I and DB-II decreased procaspase-3, -8, -9 levels in a dose-dependent manner and induced the clevage of PARP. DB-I and DB-II also triggered the mitochondrial apoptotic signaling by increasing the release of cytochrome C from mitochondria to cytosol, decreasing of anti-apoptotic Bcl-2, and increasing of pro-apoptotic Bax. DB-I and DB-II decreased the activation of Ras/Raf/MEK/ERK cascade in a dose-dependent manner. Conclusion : These results suggest that DB-I and DB-II induce apoptosis via mitochondrial pathway in HCT116 cells. Furthermore, Raf/MEK/ERK cascade is involved in DB-induced apoptosis. These results suggest that DB is potentially useful as a chemotherapeutic agent in human liver cancer.

  • PDF

Benzo[a]pyrene Cytotoxicity Tolerance in Testicular Sertoli Cells Involves Aryl-hydrocarbon Receptor and Cytochrome P450 1A1 Expression Deficiencies

  • Kim, Jin-Tac;Park, Ji-Eun;Lee, Seung-Jin;Yu, Wook-Joon;Lee, Hye-Jeong;Kim, Jong-Min
    • Development and Reproduction
    • /
    • v.25 no.1
    • /
    • pp.15-24
    • /
    • 2021
  • Benzo[a]pyrene (B[a]P) is a potent carcinogen and is classified as an endocrine-disrupting chemical. In mammalian testes, Sertoli cells support spermatogenesis. Therefore, if these cells are negatively affected by exposure to xenotoxic chemicals, spermatogenesis can be seriously disrupted. In this context, we evaluated whether mouse testicular TM4 Sertoli cells are susceptible to the induction of cytotoxicity-mediated cell death after exposure to B[a] P in vitro. In the present study, while B[a]P and B[a]P-7,8-diol were not able to induce cell death, exposure to BPDE resulted in cell death. BPDE-induced cell death is accompanied by the activation of caspase-3 and caspase-7. Depolarization of the mitochondrial membrane and cytochrome c release from mitochondria were observed in benzo[a]pyrene-7,8-diol-9,10-epoxide (BPDE)-treated cells. These results indicate that TM4 cells are susceptible to apoptosis in a caspase-dependent manner. Western blot and reverse transcription-polymerase chain reaction (RT-PCR) analyses showed that aryl hydrocarbon receptor (AhR) expression was almost undetectable in TM4 cells and that its expression was not altered after B[a]P treatment. This indicates that TM4 cells are nearly AhR-deficient. In TM4 cells, the CYP1A1 protein and its activity were not present. From these results, it is clear that AhR may be a prerequisite for CYP1A1 expression in TM4 cells. Therefore, TM4 cells can be referred to as CYP1A1-deficient cells. Thus, TM4 Sertoli cells are believed to have a rigid and protective cellular machinery against genotoxic agents. In conclusion, it is suggested that tolerance to B[a]P cytotoxicity is associated with insufficient AhR and CYP1A1 expression in testicular Sertoli cells.

Antioxidative and Anticancer Activities of Julbernardia globiflora Extract in Human Colon Adenocarcinoma HT29 Cells (Julbernardia globiflora 추출물의 항산화 활성 및 인체 대장암 세포 HT29에 대한 항암 활성 분석)

  • Oh, You Na;Jin, Soojung;Kwon, Hyun Ju;Kim, Byung Woo
    • Journal of Life Science
    • /
    • v.27 no.5
    • /
    • pp.545-552
    • /
    • 2017
  • Julbernardia globiflora, a tropical African tree widespread in Miombo woodland, has been used in folk medicine for the treatment of depression and stomach problems. However, the antioxidative and anticancer activities of J. globiflora remain unclear. The objective of this study is to evaluate the antioxidative and anticancer effects of methanol extract of J. globiflora (MEJG) and the molecular mechanism of its anticancer activity in human colon carcinoma HT29 cells. MEJG exhibited significant antioxidative effect with an $IC_{50}$ (concentration at 50% inhibition) value of $1.23{\mu}g/ml$ measuring by 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay and inhibited cell proliferation in a dose-dependent manner in HT29 cells. We found that MEJG induced apoptosis of HT29 cells with the increase of apoptotic cells and apoptotic bodies using Annexin V staining and 4,6-diamidino-2-phenylindole (DAPI) staining, respectively. The MEJG treatment showed the increase of Fas, a death receptor, and Bax, a pro-apoptotic protein, and the decrease of Bcl-2, an anti-apoptotic protein, resulting in the release of cytochrome c from the mitochondria into the cytosol and activation of caspase-3, -8 and -9. The apoptotic effects of MEJG were confirmed by cleavage of poly (ADP-ribose) polymerase (PARP). Collectively, these results suggest that MEJG may exert the anticancer effect in HT29 cells by inducing apoptosis via both the intrinsic and extrinsic pathways.

Mechanism Underlying a Proteasome Inhibitor, Lactacystin-Induced Apoptosis on SCC25 Human Tongue Squamous Cell Carcinoma Cells (사람혀편평상피세포암종세포에서 proteasome 억제제인 lactacystin에 의해 유도된 세포자멸사의 기전에 대한 연구)

  • Baek, Chul-Jung;Kim, Gyoo-Cheon;Kim, In-Ryoung;Lee, Seung-Eun;Kwak, Hyun-Ho;Park, Bong-Soo;Tae, Il-Ho;Ko, Myung-Yun;Ahn, Yong-Woo
    • Journal of Oral Medicine and Pain
    • /
    • v.34 no.3
    • /
    • pp.261-276
    • /
    • 2009
  • Lactacystin, a microbial natural product synthesized by Streptomyces, has been commonly used as a selective proteasome inhibitor in many studies. Proteasome inhibitors is known to be preventing the proliferation of cancer cells in vivo as well as in vitro. Furthermore, proteasome inhibitors, as single or combined with other anticancer agents, are suggested as a new class of potential anticancer agents. This study was undertaken to examine in vitro effects of cytotoxicity and growth inhibition, and the molecular mechanism underlying induction of apoptosis in SCC25 human tongue sqaumous cell carcinoma cell line treated with lactacystin. The viability of SCC25 cells, human normal keratinocytes (HaCaT cells) and human gingiva fibroblasts (HGF-1 cells), and the growth inhibition of SCC25 cells were assessed by MTT assay and clonogenic assay respectively. The hoechst staining, hemacolor staining and TUNEL staining were conducted to observe SCC25 cells undergoing apoptosis. SCC25 cells were treated with lactacystin, and Western blotting, immunocytochemistry, confocal microscopy, FAScan flow cytometry, MMP activity, and proteasome activity were performed. Lactacystin treatment of SCC25 cells resulted in a time- and does-dependent decrease of cell viability and a does-dependent inhibition of cell growth, and induced apoptotic cell death. Interestingly, lactacytin remarkably revealed cytotoxicity in SCC25 cells but not normal cells. And tested SCC25 cells showed several lines of apoptotic manifestation such as nuclear condensation, DNA fragmentation, the reduction of MMP and proteasome activity, the decrease of DNA contents, the release of cytochrome c into cytosol, the translocation of AIF and DFF40 (CAD) onto nuclei, the up-regulation of Bax, and the activation of caspase-7, caspase-3, PARP, lamin A/C and DFF45 (ICAD). Flow cytometric analysis revealed that lactacystin resulted in G1 arrest in cell cycle progression which was associated with up-regulation in the protein expression of CDK inhibitors, $p21^{WAF1/CIP1}$ and $p27^{KIP1}$. We presented data indicating that lactacystin induces G1 cell cycle arrest and apoptois via proteasome, mitochondria and caspase pathway in SCC25 cells. Therefore our data provide the possibility that lactacystin could be as a novel therapeutic strategy for human tongue squamous cell carcinoma.