• Title/Summary/Keyword: cytochrome C

Search Result 1,183, Processing Time 0.03 seconds

Apoptotic Effects of Co-Treatment with a Chios Gum Mastic and Eugenol on G361 Human Melanoma Cells

  • Jo, Jae-Beom;Oh, Sang-Hun;Kim, In-Ryoung;Kim, Gyoo-Cheon;Kwak, Hyun-Ho;Park, Bong-Soo
    • International Journal of Oral Biology
    • /
    • v.38 no.3
    • /
    • pp.101-110
    • /
    • 2013
  • We investigated the synergistic apoptotic effects of co-treatments with Chios gum mastic (CGM) and eugenol on G361 human melanoma cells. An MTT assay was conducted to investigate whether this co-treatment efficiently reduces the viability of G361 cells compared with each single treatment. The induction and augmentation of apoptosis were confirmed by DNA electrophoresis, Hoechst staining, and analyses of DNA hypoploidy. Western blot analysis and immunofluorescent staining were also performed to evaluate expression and translocation of apoptosis-related proteins following CGM and eugenol co-treatment. Proteasome activity and mitochondrial membrane potential (MMP) changes were also assayed.The results indicated that the co-treatment of CGM and eugenol induces multiple pathways and processes associated with an apoptotic response in G361 cells. These include nuclear condensation, DNA fragmentation, a reduction in MMP and proteasome activity, an increase of Bax and decrease of Bcl-2, a decreased DNA content, cytochrome c release into the cytosol, the translocation of AIF and DFF40 (CAD) into the nucleus, and the activation of caspase-9, caspase-7, caspase-3, PARP and DFF45 (ICAD). In contrast, separate treatments of $40{\mu}g/ml$ CGM or $300{\mu}M$ eugenol for 24 hours did not induce apoptosis. Our present data thus suggest that a combination therapy of CGM and eugenol is a potential treatment strategy for human melanoma.

Early potential effects of resveratrol supplementation on skeletal muscle adaptation involved in exercise-induced weight loss in obese mice

  • Sun, Jingyu;Zhang, Chen;Kim, MinJeong;Su, Yajuan;Qin, Lili;Dong, Jingmei;Zhou, Yunhe;Ding, Shuzhe
    • BMB Reports
    • /
    • v.51 no.4
    • /
    • pp.200-205
    • /
    • 2018
  • Exercise and resveratrol supplementation exhibit anti-obesity functions in the long term but have not been fully investigated yet in terms of their early potential effectiveness. Mice fed with high-fat diet were categorized into control (Cont), exercise (Ex), resveratrol supplementation (Res), and exercise combined with resveratrol supplementation (Ex + Res) groups. In the four-week period of weight loss, exercise combined with resveratrol supplementation exerted no additional effects on body weight loss but significantly improved whole-body glucose and lipid homeostasis. The combined treatment significantly decreased intrahepatic lipid content but did not affect intramyocellular lipid content. Moreover, the treatment significantly increased the contents of mtDNA and cytochrome c, the expression levels of peroxisome proliferator-activated receptor gamma coactivator-1 alpha and its downstream transcription factors, and the activities of ATPase and citrate synthase. However, exercise, resveratrol, and their combination did not promote myofiber specification toward slow-twitch type. The effects of exercise combined with resveratrol supplementation on weight loss could be partly due to enhanced mitochondrial biogenesis and not to fiber-type shift in skeletal muscle tissues.

Total Saponin from Korean Red Ginseng Inhibits Thromboxane A2 Production Associated Microsomal Enzyme Activity in Platelets

  • Lee, Dong-Ha;Cho, Hyun-Jeong;Kang, Hye-Yeon;Rhee, Man-Hee;Park, Hwa-Jin
    • Journal of Ginseng Research
    • /
    • v.36 no.1
    • /
    • pp.40-46
    • /
    • 2012
  • Ginseng, the root of Panax ginseng Meyer, has been used frequently in traditional oriental medicine and is popular globally. Ginsenosides, which are the saponins in ginseng, are the major components having pharmacological and biological activities, including anti-diabetic and anti-tumor activities. In this study, we investigated the effects of total saponin from Korean red ginseng(TSKRG) on thrombin-produced thromboxane $A_2$ ($TXA_2$), an aggregating thrombogenic molecule, and its associated microsomal enzymes cyclooxygenase (COX)-1 and $TXA_2$ synthase (TXAS). Thrombin (0.5 U/mL) increased $TXA_2$ production up to 169 ng/$10^8$ platelets as compared with control (0.2 ng/$10^8$ platelets). However, TSKRG inhibited potently $TXA_2$ production to the control level in a dose-dependent manner, which was associated with the strong inhibition of COX-1 and TXAS activities in platelet microsomes having cytochrome c reductase activity. The results demonstrate TSKRG is a beneficial traditional oriental medicine in platelet-mediated thrombotic diseases via suppression of COX-1 and TXAS to inhibit production of $TXA_2$.

Study in the Respiratory Metabolism in Some Bivalves(II) on the Oxidative Metabolism and its Enzyme System in the Gill Tissue of the Fresh Water Mussel, Cristaria plicata spatiosa (CLESSIN) (패류의 호흡대사에 관한 연구(II) 담수산 패류, Cristaria plicata spatiosa (CLESSIN), 아가미 조직의 산화적 대사와 그 효소분에 대하여)

  • 한문희;김동준;최희정
    • The Korean Journal of Zoology
    • /
    • v.4 no.1
    • /
    • pp.7-12
    • /
    • 1961
  • 1) Respiratory metabolism patterns and its enzyme systems in the gill tissue of the fresh water mussels, Cristaria plicata were investigated through the examination on the effects of respiratory enzyme inhibitors, (KCN, NAF) and succinoxidase assay, while studying the effects of neutral salts (NaCL, KCL, CaCl2) and pH on oxygen consumption of the gill tissue. 2) In the limited concentration of KCL (0.3mM) and NaCl (0.4mM) solutions, oxygen consumption of the intact gill tissue was accelerated, but in CaCl2(0.5mM) solution, it showed no significant effect. The oxygen consumption was gradually decreased at the above concentrations of these limitations. The optimum pH for the respiration of the gill was 7.3. 3)Cyanide in 10-8M solution inhibited 88.8% of the respiration of the intact gill tissue. Methylene blue accelerated the respiration of the noral gill tissue, and slightly but significantly reversed the cyaniide poisoned respiration. 4)Oxygen consumption of the gill homogenate was apparently increased by the mixed addition of succinate, cytochrome c and activators (AlCl3 and CaCl2). This results suggested that succinoxidase system acts on the respiratory pattern of the gil tissue. 5) It was able to recognize that the enolase, which acts on the anaerobic glycolytic system, participated in the tissue respiration of the gill for NaF in 5$\times$10-2 M solution inhibited 55.5% of the respiration of the same intact tissue.

  • PDF

The Protective Effects of Acupuncture on Oxidative Stress Caused by Cadmium in the Kidney (카드뮴으로 유발된 산화적 스트레스에 대한 침 자극의 신장 보호 효과)

  • Shin, Hwa Young;Lee, Hyun Jong;Kim, Jae Soo
    • Journal of Acupuncture Research
    • /
    • v.32 no.1
    • /
    • pp.1-11
    • /
    • 2015
  • Objectives : This study was performed to inquire into the protective effects of acupuncture on oxidative stress caused by cadmium accumulation in the kidney. Methods : Sprague-Dawley male($150{\pm}30g$) rats were stabilized for 1 week and divided into 5 groups: normal, control, $LR_3$ acupuncture, $BL_{23}$ acupuncture and sham acupuncture. For three days experimental groups received oral doses of cadmium 2 mg/kg twice a day. Acupuncture was applied bilaterally at each point 10 times for two weeks. The depth of stimulation was 1 mm at right angles and torsion of acupuncture was produced 2 times per second for 1 minute. The kidneys were extracted and weighed after two weeks, and renal function was confirmed through blood urea nitrogen(BUN). We measured reactive oxygen species of the serum and kidney, and compared expression levels of superoxide dismutase(SOD), catalase, glutathione peroxidase(Gpx), nuclear factor erythroid derived 2-related factor 2(Nrf-2), heme oxygenase-1(HO-1), nuclear factor-${\kappa}B$(NF-${\kappa}B)$, cyclooxygenase-2(COX-2), inducible nitric oxide synthase (iNOS), Bax and Cytochrome c. Results : The $LR_3$ acupuncture group and $BL_{23}$ acupuncture group experienced significantly increased kidney weight, and decreased BUN compared to control group. In terms of oxidative stress, the $LR_3$ acupuncture group and $BL_{23}$ acupuncture group experienced significantly reduced reactive oxygen species compared to the control group. Conclusions : The $LR_3$ acupuncture group and $BL_{23}$ acupuncture group experienced showed the effects of antioxidant, anti-inflammatory and apoptosis protection. The $BL_{23}$ acupuncture group was more effective than $LR_3$ acupuncture group.

Apoptotic pathway of SNU-1, human gastric cancer cell line, by Bodusan (보두산에 의한 사람 위암 세포주 SNU-1의 세포사멸 경로)

  • Lee, Jae-Eun;Yun, Hyun-Joung;Lee, Young-Tae;Bae, Chang-Wook;Jeun, Hyun-Sook;Park, Sun-Dong
    • The Korea Journal of Herbology
    • /
    • v.21 no.1
    • /
    • pp.33-42
    • /
    • 2006
  • Objectives : The purpose of this study was to investigate the anticancer effects of Bodusan (BDS) on SNU-1 cells, a human gastric cancer cell line. Methods : To study the cytotoxic effect of BDS on SNU-1 cells, the cells were treated with various concentrations of BDS and then cell viability was determined by XTT reduction method and trypan blue exclusion assay. The typical signs of apoptosis, was examined by western blot analysis. BDS-induced MAPK activation was also examined by Western blot for phosphorylated ERK and p38. Results : BDS reduced proliferation of SNU-1 cells in a dose-dependent manner and decreased procaspase 3 level in a dose-dependent manner and induced the clevage of PARP at concentration > 500 ${\mu}g/ml$. BDS also triggered the mitochondrial apoptotic signaling by increasing the release of cytochrome C from mitochondria to cytosol and reducing the level of anti-apoptotic Bcl-2. BDS significantly decreased ERK phosphorylation and increased p38 phosphorylation in a dose-dependent manner. Futhermore, BDS treatment up-regulated p53 and p21waf expression in a dose-dependent manner. Conclusion : BDS-induced apoptosis is MAP kinase-dependent apoptoric pathway and arrested SNU-1 cells at the G0/G1 of cell cycle. These results suggest that BDS is potentially useful as a chemotherapeutic agent in human gastric cancer.

  • PDF

In-Jin-Ho-Tang as a potential anti-cancer drug by induction of apoptosis in HepG2 cells

  • Yun, Hyun-Jeong;Heo, Sook-Kyoung;Park, Won-Hwan;Park, Sun-Dong
    • Advances in Traditional Medicine
    • /
    • v.9 no.2
    • /
    • pp.106-114
    • /
    • 2009
  • Hepatocellular carcinoma is the world's most common primary malignant tumor of the liver. In-Jin-ho-Tang (IJHT) has been used as a traditional Chinese herbal medicine since ancient times, and today it is widely used as a medication for jaundice associated with inflammation of the liver. In-Jin-Ho-Tang is a drug preparation consisting of three herbs: Artemisiae Capillaris Herba (Artemisia capillaries $T_{HUNS}$, Injinho in Korean), Gardeniae Fructus (Gardenia jasminodes $E_{LLIS}$, Chija in Korean) and Rhei radix et rhizoma (Rheum palmatum L., Daehwang in Korean). This study investigated whether or not methanol extract of IJHT could induce HepG2 cancer cell death. Cytotoxic activity of IJHT on HepG2 cells was measured using an XTT assay, with an $IC_{50}$ value of $700{\mu}g/ml$ at 24 h Apoptosis induction by IJHT in HepG2 cells was verified by the cleavage of poly ADP-ribose polymerase, and a decrease in procaspase-3, -8, -9. Treatment of IJHT resulted in the release of cytochrome c into cytosol, loss of mitochondrial membrane potential (${\Delta}{\Psi}_m$), decrease in anti-apoptotic Bcl-2, and an increase in pro-apoptotic Bax expression. Thus, IJHT induced apoptosis in HepG2 cells via activation of caspase and mitochondria pathway. These results indicate that IJHT has potential as an anti-cancer agent.

A study of apoptosis induction of Euonymus alatus (Thunb.) Sieb via mitochondrial pathway prooxidant in leiomyomal smooth muscle cells (귀전우(鬼箭羽)의 인간 자궁근종 세포에서 미토콘드리아 경로를 통한 산화제로서 apoptosis 유도작용에 관한 연구)

  • Kwon, Cha-Nam;Lee, Tae-Kyun;Kim, Dong-Il
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.18 no.3
    • /
    • pp.67-76
    • /
    • 2005
  • Purpose : 귀전우(Euonymus alatus, EA)는 현재까지 항종양활성을 나타낸다고 보고되었지만 그 작용 메커니즘에 대해서는 아직 밝혀지지 않은 채 남아 있다. 본 연구에서는, 자궁근종세포(ULSMC)에서 EA의 분자적 수준에서의 작용메커니즘을 연구${\cdot}$검토하고자 하였다. Methods : EA의 열수추출액이 자궁근종세포(ULSMC)와 caspase-3 pretense의 활성도에 미치는 영향을 측정하였다. Results : 우리는 자궁근종에서 EA 유도 세포독성의 메커니즘을 검토하였는바, 근종 세포들은 20-200g/ml 농도의 EA추출물에 6시간 배양될 때, caspase-3가 활성화되고, 그때 세포들은 apoptosis를 유발하게 되었다. EA에 의한 apoptosis의 유도가 진행되었으며, cytochrome- c의 세포질분획에서 양적증가가 caspase-3의 활성보다도 우세하였다. GSH합성의 저해제인 5mM buthionine용액에 전처리는 EA유도 apoptosis를 용이하게 하지만 pan-caspase inhibitor인 Z-VAD-fmk용액 전 처리는 부분적으로 apoptosis유도를 억제하였다. 한편, EA는 건강한 지원자들로 부터 채취한 말초혈액 단핵세포들에 있어서는 독성의 효과는 없었다. Conclusion : 이들 결과들은 EA가 prooxidant로 작용을 하고 그리고 caspase-3 activation과 mitochondrial pathway를 경유하는 apoptosis를 유발한다는 것을 나타낸다. EA의 탕제약제로서 열수추출액이 항산화활성뿐만 아니라, 종양세포에 대한 세포독성효과를 나타낸다고 보고된 바, 이에 향후 근종치료에 대한 임상연구가 필요할 것으로 보인다.

  • PDF

Mitochondrial Efficiency-Dependent Viability of Saccharomyces cerevisiae Mutants Carrying Individual Electron Transport Chain Component Deletions

  • Kwon, Young-Yon;Choi, Kyung-Mi;Cho, ChangYeon;Lee, Cheol-Koo
    • Molecules and Cells
    • /
    • v.38 no.12
    • /
    • pp.1054-1063
    • /
    • 2015
  • Mitochondria play a crucial role in eukaryotic cells; the mitochondrial electron transport chain (ETC) generates adenosine triphosphate (ATP), which serves as an energy source for numerous critical cellular activities. However, the ETC also generates deleterious reactive oxygen species (ROS) as a natural byproduct of oxidative phosphorylation. ROS are considered the major cause of aging because they damage proteins, lipids, and DNA by oxidation. We analyzed the chronological life span, growth phenotype, mitochondrial membrane potential (MMP), and intracellular ATP and mitochondrial superoxide levels of 33 single ETC component-deleted strains during the chronological aging process. Among the ETC mutant strains, 14 ($sdh1{\Delta}$, $sdh2{\Delta}$, $sdh4{\Delta}$, $cor1{\Delta}$, $cyt1{\Delta}$, $qcr7{\Delta}$, $qcr8{\Delta}$, $rip1{\Delta}$, $cox6{\Delta}$, $cox7{\Delta}$, $cox9{\Delta}$, $atp4{\Delta}$, $atp7{\Delta}$, and $atp17{\Delta}$) showed a significantly shorter life span. The deleted genes encode important elements of the ETC components succinate dehydrogenase (complex II) and cytochrome c oxidase (complex IV), and some of the deletions lead to structural instability of the membrane-$F_1F_0$-ATP synthase due to mutations in the stator stalk (complex V). These short-lived strains generated higher superoxide levels and produced lower ATP levels without alteration of MMP. In summary, ETC mutations decreased the life span of yeast due to impaired mitochondrial efficiency.

Effects of Nimodipine on the Pharmacokinetics of Warfarin in Rats: A Possible Role of P-glycoprotein and CYP3A4 Inhibition by Nimodipine (와파린의 약물동태학에 니모디핀의 영향)

  • Moon, Hong Seop;Lee, Chong Ki;Burm, Jin Pil
    • Korean Journal of Clinical Pharmacy
    • /
    • v.23 no.3
    • /
    • pp.206-212
    • /
    • 2013
  • Purpose: The aim of this study was to investigate the effect of nimodipine on the pharmacokinetics of warfarin after oral and intravenous administration of warfarin in rats. Methods: Warfarin was administered orally (0.2 mg/kg) or intravenously (0.05 mg/kg) without or with oral administration of nimodipine (0.5 or 2 mg/kg) in rats. The effect of nimodipine on the P-glycoprotein as well as cytochrome P450 (CYP) 3A4 activity was also evaluated. Results: Nimodipine inhibited CYP3A4 enzyme activity with 50% inhibition concentration ($IC_{50}$) of $10.2{\mu}M$. Compared to those animals in the oral control group (warfarin without nimodipine), the area under the plasma concentration-time curve (AUC) of warfarin was significantly greater (0.5 mg/kg, P<0.05; 2 mg/kg, P<0.01) by 31.3-57.6%, and the peak plasma concentration ($C_{max}$) was significantly higher (2 mg/kg, P<0.05) by 29.4% after oral administration of warfarin with nimodipine, respectively. Consequently, the relative bioavailability of warfarin increased by 1.31- to 1.58-fold and the absolute bioavailability of warfarin with nimodipine was significantly greater by 64.1-76.9% compared to that in the control group (48.7%). In contrast, nimodipine had no effect on any pharmacokinetic parameters of warfarin given intravenously. Conclusion: Therefore, the enhanced oral bioavailability of warfarin may be due to inhibition of CYP 3A4-mediated metabolism rather than P-glycoprotein-mediated efflux by nimodipine.