• Title/Summary/Keyword: cytochrome $c_3$

Search Result 736, Processing Time 0.026 seconds

Mechanism Underlying a Proteasome Inhibitor, Lactacystin-Induced Apoptosis on SCC25 Human Tongue Squamous Cell Carcinoma Cells (사람혀편평상피세포암종세포에서 proteasome 억제제인 lactacystin에 의해 유도된 세포자멸사의 기전에 대한 연구)

  • Baek, Chul-Jung;Kim, Gyoo-Cheon;Kim, In-Ryoung;Lee, Seung-Eun;Kwak, Hyun-Ho;Park, Bong-Soo;Tae, Il-Ho;Ko, Myung-Yun;Ahn, Yong-Woo
    • Journal of Oral Medicine and Pain
    • /
    • v.34 no.3
    • /
    • pp.261-276
    • /
    • 2009
  • Lactacystin, a microbial natural product synthesized by Streptomyces, has been commonly used as a selective proteasome inhibitor in many studies. Proteasome inhibitors is known to be preventing the proliferation of cancer cells in vivo as well as in vitro. Furthermore, proteasome inhibitors, as single or combined with other anticancer agents, are suggested as a new class of potential anticancer agents. This study was undertaken to examine in vitro effects of cytotoxicity and growth inhibition, and the molecular mechanism underlying induction of apoptosis in SCC25 human tongue sqaumous cell carcinoma cell line treated with lactacystin. The viability of SCC25 cells, human normal keratinocytes (HaCaT cells) and human gingiva fibroblasts (HGF-1 cells), and the growth inhibition of SCC25 cells were assessed by MTT assay and clonogenic assay respectively. The hoechst staining, hemacolor staining and TUNEL staining were conducted to observe SCC25 cells undergoing apoptosis. SCC25 cells were treated with lactacystin, and Western blotting, immunocytochemistry, confocal microscopy, FAScan flow cytometry, MMP activity, and proteasome activity were performed. Lactacystin treatment of SCC25 cells resulted in a time- and does-dependent decrease of cell viability and a does-dependent inhibition of cell growth, and induced apoptotic cell death. Interestingly, lactacytin remarkably revealed cytotoxicity in SCC25 cells but not normal cells. And tested SCC25 cells showed several lines of apoptotic manifestation such as nuclear condensation, DNA fragmentation, the reduction of MMP and proteasome activity, the decrease of DNA contents, the release of cytochrome c into cytosol, the translocation of AIF and DFF40 (CAD) onto nuclei, the up-regulation of Bax, and the activation of caspase-7, caspase-3, PARP, lamin A/C and DFF45 (ICAD). Flow cytometric analysis revealed that lactacystin resulted in G1 arrest in cell cycle progression which was associated with up-regulation in the protein expression of CDK inhibitors, $p21^{WAF1/CIP1}$ and $p27^{KIP1}$. We presented data indicating that lactacystin induces G1 cell cycle arrest and apoptois via proteasome, mitochondria and caspase pathway in SCC25 cells. Therefore our data provide the possibility that lactacystin could be as a novel therapeutic strategy for human tongue squamous cell carcinoma.

Morroniside Protects C2C12 Myoblasts from Oxidative Damage Caused by ROS-Mediated Mitochondrial Damage and Induction of Endoplasmic Reticulum Stress

  • Hyun Hwangbo;Cheol Park;EunJin Bang;Hyuk Soon Kim;Sung-Jin Bae;Eunjeong Kim;Youngmi Jung;Sun-Hee Leem;Young Rok Seo;Su Hyun Hong;Gi-Young Kim;Jin Won Hyun;Yung Hyun Choi
    • Biomolecules & Therapeutics
    • /
    • v.32 no.3
    • /
    • pp.349-360
    • /
    • 2024
  • Oxidative stress contributes to the onset of chronic diseases in various organs, including muscles. Morroniside, a type of iridoid glycoside contained in Cornus officinalis, is reported to have advantages as a natural compound that prevents various diseases. However, the question of whether this phytochemical exerts any inhibitory effect against oxidative stress in muscle cells has not been well reported. Therefore, the current study aimed to evaluate whether morroniside can protect against oxidative damage induced by hydrogen peroxide (H2O2) in murine C2C12 myoblasts. Our results demonstrate that morroniside pretreatment was able to inhibit cytotoxicity while suppressing H2O2-induced DNA damage and apoptosis. Morroniside also significantly improved the antioxidant capacity in H2O2-challenged C2C12 cells by blocking the production of cellular reactive oxygen species and mitochondrial superoxide and increasing glutathione production. In addition, H2O2-induced mitochondrial damage and endoplasmic reticulum (ER) stress were effectively attenuated by morroniside pretreatment, inhibiting cytoplasmic leakage of cytochrome c and expression of ER stress-related proteins. Furthermore, morroniside neutralized H2O2-mediated calcium (Ca2+) overload in mitochondria and mitigated the expression of calpains, cytosolic Ca2+-dependent proteases. Collectively, these findings demonstrate that morroniside protected against mitochondrial impairment and Ca2+-mediated ER stress by minimizing oxidative stress, thereby inhibiting H2O2-induced cytotoxicity in C2C12 myoblasts.

NDRG2 Expression Increases Apoptosis Induced by Doxorubicin in Malignant Breast Caner Cells

  • Kim, Myung-Jin;Kang, Kyeong-Ah;Yang, Young;Lim, Jong-Seok
    • Biomolecules & Therapeutics
    • /
    • v.17 no.4
    • /
    • pp.370-378
    • /
    • 2009
  • N-myc downstream-regulated gene 2 (NDRG2) has recently been found to be a tumor suppressor gene. Although it has been reported that NDRG2 expression in breast cancer cells decreases cell proliferation by inhibiting STAT3 activation via SOCS1 induction, the molecular mechanism of chemotherapeutic agent-induced apoptosis is not well known. To elucidate the effect of NDRG2 on the apoptotic pathway induced by doxorubicin, we established stable cell lines expressing NDRG2 and investigated the effect of NDRG2 expression on the doxorubicin-induced apoptosis. While STAT3 activation was remarkably inhibited by NDRG2 overexpression, the expression level of p21 was increased by NDRG2 expression. We confirmed that NDRG2-expressing cells treated with doxorubicin suppressed STAT3 activation and upregulated p21 expression. NDRG2 expression considerably enhanced TUNEL positive apoptotic cells, poly-ADP ribose polymerase (PARP) cleavage, release of cytochrome c to cytosol, and caspase-3 activity in doxorubicin-induced apoptosis. Bid expression in a resting state and after treatment with doxorubicin increased in MDA-MB-231-NDRG2 cells compared to MDA-MB-231-mock cells. Meanwhile, Bcl-$x_L$ expression decreased in MDA-MB-231-NDRG2 cells compared to MDA-MB-231-mock cells in a resting state and in doxorubicin-treated cells. Collectively, these data suggest that suppression of STAT3 activation by NDRG2 influences the sensitivity to doxorubicin-induced apoptosis of breast cancer cells and this may provide a potential therapeutic benefit to overcome the resistance against doxorubicin in breast cancer.

Effects of Amlodipine on the pharmacokinetics of Repaglinide (암로디핀이 레파그리니드의 약물동태에 미치는 영향)

  • Choi, Dong-Hyun;Choi, Jun-Shik
    • Korean Journal of Clinical Pharmacy
    • /
    • v.21 no.3
    • /
    • pp.215-223
    • /
    • 2011
  • 암로디핀과 레파그리니드의 병용은 당뇨병의 합병증으로인한 고혈압 유발 시 병용 처방될 수 있다. 암로디핀과 레파그리니드의 약동학적 상호작용 연구를 위하여 암로디핀 (0.1 및 0.4 mg/kg) 과 레파그리니드를 흰 쥐에 경구(0.5 mg/kg) 및 정맥 (0.2 mg/kg) 투여하여 연구를 실시하였다. 암로디핀이 cytochrome P450 (CYP) 3A4 활성과 P-glycoprotein (P-gp)의 활성에 미치는 영향도 평가하였다. 암로디핀의 CYP3A4의 50% 효소활성억제는 $9.1{\mu}M$ 이었다. 암로디핀은 P-gp의 활성에는 영향을 미치지 않았다. 암로디핀 (0.4 mg/kg)은 레파그리니드의 혈장곡선하면적(AUC)과 최고혈장농도 ($C_{max}$)를 40.2% 와 22.2% 각각 유의성 (p < 0.05)있게 증가시켰다. 따라서, 레파그리니드의 상대적생체이용률 (RB)은 암로디핀과 병용투여 시 1.18-1.40 배 증가되었으며, 또한 레파그리니드의 절대적생체이용률(AB)은 대조군과 비교하여 41.0% 유의성 있게 증가되었다. 경구 투여 시와는 대조적으로, 암로디핀은 정맥 내로 투여된 레파그리니드에서는 약동학적 파라미터에 어떤 영향도 미치지 않았다. 따라서 암로디핀이 레파그리니드의 생체이용률을 증가시킨 것은 신장배설 감소 또는 P-gp 활성억제 보다는 암로디핀이 소장 또는 간장에서 CYP3A4을 억제시켰기 때문으로 사료된다. 암로디핀과 레파그리니드의 병용투여 시 레파그리니드의 용량을 조절하는 것이 안전하다고 사료된다.

A study of apoptosis induction of Euonymus alatus (Thunb.) Sieb via mitochondrial pathway prooxidant in leiomyomal smooth muscle cells (귀전우(鬼箭羽)의 인간 자궁근종 세포에서 미토콘드리아 경로를 통한 산화제로서 apoptosis 유도작용에 관한 연구)

  • Kwon, Cha-Nam;Lee, Tae-Kyun;Kim, Dong-Il
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.18 no.3
    • /
    • pp.67-76
    • /
    • 2005
  • Purpose : 귀전우(Euonymus alatus, EA)는 현재까지 항종양활성을 나타낸다고 보고되었지만 그 작용 메커니즘에 대해서는 아직 밝혀지지 않은 채 남아 있다. 본 연구에서는, 자궁근종세포(ULSMC)에서 EA의 분자적 수준에서의 작용메커니즘을 연구${\cdot}$검토하고자 하였다. Methods : EA의 열수추출액이 자궁근종세포(ULSMC)와 caspase-3 pretense의 활성도에 미치는 영향을 측정하였다. Results : 우리는 자궁근종에서 EA 유도 세포독성의 메커니즘을 검토하였는바, 근종 세포들은 20-200g/ml 농도의 EA추출물에 6시간 배양될 때, caspase-3가 활성화되고, 그때 세포들은 apoptosis를 유발하게 되었다. EA에 의한 apoptosis의 유도가 진행되었으며, cytochrome- c의 세포질분획에서 양적증가가 caspase-3의 활성보다도 우세하였다. GSH합성의 저해제인 5mM buthionine용액에 전처리는 EA유도 apoptosis를 용이하게 하지만 pan-caspase inhibitor인 Z-VAD-fmk용액 전 처리는 부분적으로 apoptosis유도를 억제하였다. 한편, EA는 건강한 지원자들로 부터 채취한 말초혈액 단핵세포들에 있어서는 독성의 효과는 없었다. Conclusion : 이들 결과들은 EA가 prooxidant로 작용을 하고 그리고 caspase-3 activation과 mitochondrial pathway를 경유하는 apoptosis를 유발한다는 것을 나타낸다. EA의 탕제약제로서 열수추출액이 항산화활성뿐만 아니라, 종양세포에 대한 세포독성효과를 나타낸다고 보고된 바, 이에 향후 근종치료에 대한 임상연구가 필요할 것으로 보인다.

  • PDF

Pharmacokinetic Interaction between Nisoldipine and Repaglinide in Rats

  • Choi, In;Choi, Dong-Hyun;Yeum, Cheul-Ho;Choi, Jun-Shik
    • Biomolecules & Therapeutics
    • /
    • v.19 no.4
    • /
    • pp.498-503
    • /
    • 2011
  • The purpose of this study was to investigate the effects of nisoldipine on the pharmacokinetics of repaglinide in rats. The effect of nisoldipine on cytochrome P450 (CYP) 3A4 activity and P-glycoprotein (P-gp) were evaluated. The pharmacokinetic parameters of repaglinide were also determined in rats after oral (0.5 $mg{\cdot}kg^{-1}$) and intravenous (0.2 $mg{\cdot}kg^{-1}$) administration of repaglinide to rats without or with nisoldipine (0.3 and 1.0 $mg{\cdot}kg^{-1}$). Nisoldipine inhibited CYP3A4 enzyme activity with a 50% inhibition concentration of 5.5 ${\mu}M$. In addition, nisoldipine significantly enhanced the cellular accumulation of rhodamine-123 in MCF-7/ADR cells overexpressing P-gp. Compared to the oral control group, nisoldipine significantly increased the $AUC_{0-{\infty}}$ and the $C_{max}$ of repaglinide by 46.9% and 24.9%, respectively. Nisoldipine also increased the absolute bioavailability (A.B.) of repaglinide by 47.0% compared to the oral control group. Moreover, the relative bioavailability (R.B.) of repaglinide was 1.16- to 1.47-fold greater than that of the control group. Nisoldipine enhanced the oral bioavailability of repaglinide, which may be attributable to the inhibition of the CYP3A4-mediated metabolism in the small intestine and/or in the liver and to inhibition of P-gp in the small intestine rather than to reduction of renal elimination of repaglinide by nisoldipine. The increase in the oral bioavailability of repaglinide should be taken into consideration of potential drug interactions when co-administering repaglinide and nisoldipine.

Imyosan induces caspases-mediated apoptosis in human colorectal cancer HCT116 cells (이묘산(二妙散)에 의한 대장암 세포주 HCT116의 Caspases 활성화를 매개로 한 세포사멸)

  • Kim, Sun-Mo;Yun, Hyun-Jeung;Lee, Hyun-Woo;Kim, Pan-Jun;Lee, Chang-Hyun;Park, Won-Hwan;Park, Sun-Dong
    • Herbal Formula Science
    • /
    • v.14 no.2
    • /
    • pp.21-32
    • /
    • 2006
  • The purpose of this study was to investigate the effect of Imyosan on apoptosis in human colorectal cancer HCT116 cells. Phellodendron amurense Rupr. and Atratylodes lancea D.C. compose Imyosan. First of all, to study the cytotoxic effect of methanol extract of Imyosan (IMS-MeOH) on HCT116 cells, the cells were treated with various concentrations of IMS-MeOH and then cell viability was determined by XTT reduction method. IMS-MeOH reduced viability of HCT116 cells in a dose and time-dependent manner. To confirm the induction of apoptosis, the c1eavage of poly ADP-ribose polymerase (PARP), a substrate for caspase-3 and a typical sign of apoptosis, and the activation of caspase-3, procaspase-8 and procaspase-9 were examined by western blot analysis. IMS-MeOH decreased procaspase-3, procaspase-8 and procaspase-9 levels in a dose-dependent manner and induced the clevage of PARP. IMS-MeOH triggered the mitochondrial apoptotic signaling by increasing the release of cytochrome c from mitochondria to cytosol. Furthermore, IMS-MeOH also downregulated the anti-apoptotic Bcl-2 and upregulated the pro-apoptotic-Bax. Therefore, these results suggest that IMS-MeOH induced HCT1l6 cell death through the mitochondrial pathway. To explore whether the activities of caspases was required for induction of apoptosis by IMS-MeOH, caspase-3, -8, -9 activity measured by using substrates, respectively. IMS-MeOH increased caspase-3, -8, -9 activity. Co-treatment with inhibitors of caspase-3, -8, -9 and IMS-MeOH significantly blocked IMS-MeOH-triggered apoptosis in HCT1l6 cells. These results suggest that IMS-MeOH induces caspases-mediated apoptosis.

  • PDF

Ethanolic Extract of Marsdenia condurango Ameliorates Benzo[a]pyrene-induced Lung Cancer of Rats -Condurango Ameliorates BaP-induced Lung Cancer in Rats-

  • Sikdar, Sourav;Mukherjee, Avinaba;Khuda-Bukhsh, Anisur Rahman
    • Journal of Pharmacopuncture
    • /
    • v.17 no.2
    • /
    • pp.7-17
    • /
    • 2014
  • Objectives: Condurango is widely used in various systems of complementary and alternative medicines (CAM) against oesophageal and stomach ailments including certain types of cancer. However, until now no systematic study has been conducted to verify its efficacy and dose with proper experimental support. Therefore, we examined if ethanolic extract of Condurango could ameliorate benzo[a]pyrene (BaP)-induced lung cancer in rats, in vivo to validate its use as traditional medicine. Methods: Fifteen male and 15 female Sprague-Dawley (SD) rats were treated with 0.28 mg/kg of Sweet Bee Venom (SBV) (high-dosage group) and the same numbers of male and female SD rats were treated with 0.2 mL/kg of normal saline (control group) for 13 weeks. We selected five male and five female SD rats from the high-dosage group and the same numbers of male and female SD rats from the control group, and we observed these rats for four weeks. We conducted body-weight measurements, ophthalmic examinations, urinalyses and hematology, biochemistry, histology tests. Results: A histological study revealed gradual progress in lung tissue-repair activity in Condurango-fed cancer-bearing rats, showing gradual tissue recovery after three months of drug administration. Condurango has the capacity to generate reactive oxygen species (ROS), which may contribute to a reduction in anti-oxidative activity and to an induction of oxidative stress-mediated cancer cell-death. Condurango-activated pro-apoptotic genes (Bax, caspase-3, caspase-9, p53, cytochrome-c, apaf-1, ICAD and PARP) and down-regulated antiapoptotic-Bcl-2 expression were noted both at mRNA and protein levels. Studies on caspase-3 activation and PARP cleavage by western blot analysis revealed that Condurango induced apoptosis through a caspase-3-dependent pathway. Conclusion: The anticancer efficacy of an ethanolic extract of Condurango for treating BaP-induced lung cancer in rats lends support for its use in various traditional systems of medicine.

Chemopreventive Effect of Vegetable or Fruit Extract Against Total Diesel Exhaust Particle Extract in NIH/3T3 Cells Using Alkaline Single Cell Gel Electrophoresis (총 디젤분진의 DNA 손상작용과 야채 및 과일추출물의 보호효과)

  • Heo Chan;Kim Nam-Yee;Heo Moon-Young
    • Environmental Analysis Health and Toxicology
    • /
    • v.21 no.2 s.53
    • /
    • pp.127-138
    • /
    • 2006
  • In urban areas, diesel exhaust particles (DEP) are probably a major component of particulate matters, especially in Korea where drive many diesel vehicles. The aim of this study was to investigate genotoxic effects of DEP using single ceil gel electrophoresis. In order to evaluate the mechanisms of DEP genotoxicity, the rat microsome mediated and DNA repair enzyme treated comet assays together with conventional comet assay were performed. Total diesel particles (DEPT) was collected without site fractionation from diesel engine bus and dichloromethane extract was obtained. The organic extract of DEPT revealed DNA damage itself in NIH/3T3 cells. The level of DNA breaks plus oxidative DNA lesions and microsome mediated DNA damage was assessed by modified single cell gel eletrophoresis. DEPT was able to induce oxidative DNA damage as well as microsome mediated DNA damage. Vitamin C as an model antioxidant reduced DNA damage in endonuclase III treated comet assay. One of flavonoid, galangin as a CYP1A1 inhibitor. reduced DNA damage in the presence of S-9 mixture. $DEP_T$ is the sources of oxidative stress, but antioxidants can significantly reduce oxidative DNA dmage. And $DEP_T$ may contain indirect mutagens which can be inhibited by CYP1A1 inhibitors. The ethanol extracts of the mixed vegetables (BV) or the mixed fruits (BF) were evaluated for their in vitro antigenotoxic effects. BV and BF showed potent Inhibitory effects against DEPT induced DNA damage with oxidative DNA lesions and in the prescence of S-9 mixture. These results indicate that BV and BF could prevent cellular DNA damage by inhibiting oxidative stress and suppressing cytochrome P4501A1 in cell culture.

Molecular Detection of Spirometra decipiens in the United States

  • Jeon, Hyeong-Kyu;Park, Hansol;Lee, Dongmin;Choe, Seongjun;Sohn, Woon-Mok;Eom, Keeseon S.
    • Parasites, Hosts and Diseases
    • /
    • v.54 no.4
    • /
    • pp.503-507
    • /
    • 2016
  • The genus Spirometra belongs to the family Diphyllobothriidae and order Pseudophyllidea, and includes intestinal parasites of cats and dogs. In this study, a plerocercoid labeled as Spirometra mansonoides from the USA was examined for species identification and phylogenetic analysis using 2 complete mitochondrial genes, cytochrome c oxidase I (cox1) and NADH dehydrogenase subunit 3 (nad3). The cox1 sequences (1,566 bp) of the plerocercoid specimen (USA) showed 99.2% similarity to the reference sequences of the plerocercoid of Korean Spirometra decipiens (GenBank no. KJ599679), and 99.1% similarity in regard to nad3 (346 bp). Phylogenetic tree topologies generated using 4 analytical methods were identical and showed high confidence levels with bootstrap values of 1.00, 100%, 100%, and 100% for Bayesian inference (BI), maximum-likelihood (ML), neighbor-joining (NJ), and maximum parsimony (MP) methods, respectively. Representatives of Diphyllobothrium and Spirometra species formed a monophyletic group, and the sister-genera status between these species was well supported. Trapezoic proglottids in the posterior 1/5 region of an adult worm obtained from an experimentally infected cat were morphologically examined. The outer uterine loop of the uterus coiling characteristically consisted of 2 complete turns. The results clearly indicated that the examined Spirometra specimen from the USA matched to S. decipiens very well, and indicated possible presence of the life cycle of this species in this region.