• Title/Summary/Keyword: cytochrome $c_3$

Search Result 739, Processing Time 0.029 seconds

Glucose Oxidase/glucose Induces Apoptosis in C6 Glial Cells via Mitochondria-dependent Pathway

  • PARK Min Kyu;KIM Woo Sang;LEE Young Soo;KANG Young Jin;CHONG Won Seog;KIM Hye Jung;SEO Han Geuk;LEE Jae Heun;CHANG Ki Churl
    • Biomolecules & Therapeutics
    • /
    • v.13 no.4
    • /
    • pp.207-213
    • /
    • 2005
  • It has been proposed that reactive oxygen species (ROS), mainly superoxide anion ($O_2^-$) and hydrogen peroxide ($H_2O_2$), may mediate oxidative stress. Production of $H_2O_2$ during oxidative phosphorylation, inflammation, and ischemia can cause oxidative stress leading to cell death. Although glucose oxidase (GOX) in the presence of glucose continuously generates $H_2O_2$, it is not clear whether GOX produces apoptotic cell death in C6 glial cells. Thus, we investigated the mechanism by which GOX induces cell death. Cells were incubated with different concentration of GOX in the presence of glucose where cell viability, TUNEL and DNA ladder were analyzed. Results indicated that GOX exhibited cytotoxicity in a dose dependent manner by MTT assay. TUNEL positive cell and DNA laddering showed that GOX-induced cytotoxicity was due to apoptosis. Western blot analysis also showed that the cleaved caspase-3 level was detected in the GOX-treated cells at 10 mU/ml and increased dramatically at 30 mU/ml. Cleaved PARP also appeared at 10 mU/ml and lasted at 20 or 30 mU/ml of GOX. Cytochrome c level was increased by GOX dose dependently, which was contrast to Bcl-2 expression level. These results suggest that GOX induces apoptosis through caspase-3 activation, which followed by cytochrome c release from mitochondria through regulating of Bcl-2 level.

Effects of Bisphenol and Octylphenol on TM3 Cell : Expression of Cytochrome P450scc and Estrogen Receptor $\alpha$ mRNA (Bisphenol과 Octylphenol이 TM3 세포에 미치는 영향: Cytochrome P450scc와 Estrogen Receptor $\alpha$ 유전자의 발현)

  • 이호준;김묘경;강희규;김동훈;한성원;고덕성
    • Development and Reproduction
    • /
    • v.4 no.2
    • /
    • pp.215-220
    • /
    • 2000
  • Most of endocrine disrupters (EDs) have been reported to exhibit estrogenic or anti-androgenic activity and thereby may disrupt reproductive development in human or wildlife. This study was performed to investigate the effects of estrogen (E$_2$), bisphenol (BP) and octylphenol (OP) on the mouse Leydig cell line (TM3). TM3 originated from testis of 11~13-daly-old BALB/c nu/+ mice was cultured in DMEM supplemented with 10% FBS alone or medium with estrogen (E$_2$), bisphenol (BP) and octylphenol (OP; 1 pM, 1 nM, 1 $\mu$M, 1 mM, respectively) for 48 hours. After culture, total cell number and viability were assessed by heamocyto-meter and trypan blue stain. Expression of cytochrome P450scc (CYPscc) mRNA whose product is involved in steroid hormone biosynthesis and estrogen receptor $\alpha$(ER $\alpha$) mRNA were detected by RT-PCR. As a result, treatment of TM3 with E$_2$, BP and OP(1 mM, respectively) significantly decreased the viability but not all of groups as high as 1 $\mu$M. Exposure of TM3 to OP significantly reduced the total cell number but not E$_2$ or BP. The expression of CYPscc mRNA was slightly reduced in BP (1 nM, 1 $\mu$M) and significantly decreased in OP (1 nM, 1 $\mu$M) treated TM3, except E$_2$ group. But the expression of ER $\alpha$ mRNA was sightly increased in all treated groups. In conclusion, BP and OP (high concentration) might inhibit steroidogenesis by decreasing the CYPscc mRNA expression in the mouse testis. These results suggest that BP and OP might impair spermatogenesis and subsequently disturb testicular function.

  • PDF

Diazoxide Suppresses Mitochondria-dependent Apoptotic Signaling in Endothelial Cells Exposed to High Glucose Media (고농도 당에 노출된 혈관 내피세포에서 미토콘드리아 의존성 세포사멸 기작 활성화에 미치는 diazoxide의 억제 효과)

  • Jung, Hyun Ju;Kim, Tae Hyun;Woo, Jae Suk
    • Journal of Life Science
    • /
    • v.29 no.12
    • /
    • pp.1393-1400
    • /
    • 2019
  • In the present study, we examined the effect of mitochondrial K+ channel opener diazoxide on the mitochondria-dependent apoptotic signaling in endothelial cells exposed to high glucose (HG) media. Endothelial cells derived from human umbilical veins were exposed to HG media containing 30 mM glucose, and the degree of apoptotic cell death associated with activation of the mitochondria-dependent apoptotic signaling pathway was determined. Exposure to HG media was seen to enhance apoptotic cell death in a time-dependent manner. In these cells, activation of caspases 3, 8, and 9 was observed, and while caspase-3 and -9 inhibitors suppressed the HG-induced apoptotic cell death, a caspase-8 inhibitor did not. The HG-treated cells exhibited disruption of mitochondrial membrane potential, formation of permeability transition pores, and cytosolic release of cytochrome c. Subsequently, diazoxide was seen to attenuate the HG-induced apoptotic cell death; caspase-9 activation was suppressed but caspase 8 was not. Diazoxide also suppressed the depolarization of mitochondrial membrane potential, the formation of mitochondrial permeability transition pores, and the release of cytochrome c. These effects were significantly inhibited by 5-hydroxydecanoate, a selective blocker of ATP-sensitive K+ channels (KATP). The present results demonstrate that diazoxide exhibits a beneficial effect to ameliorate HG-induced endothelial cell apoptosis. Opening the KATP could help preserve the functional integrity of mitochondria and provide an underlying mechanism to suppress HG-triggered apoptotic signaling.

Effects of epigallocatechin gallate on $CoCl_2-induced$ apoptosis in PC12 cells (PC12 세포에서 $CoCl_2$ 유발 세포자멸사에 대한 epigallocatechin-gallate의 역할)

  • Mo, Hyun-Chul;Choi, Nam-Ki;Kim, Seon-Mi;Kim, Won-Jae;Yang, Kyu-Ho
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.33 no.1
    • /
    • pp.13-24
    • /
    • 2006
  • Neuronal apoptotic events, consequently resulting in neuronal cell death, are occurred in hypoxic/ischemic condition. This cell death has been shown to be accompanied with the production of reactive oxygen species (ROS), which can attack cellular components such as nucleic acids, proteins and phospholipid. However, the underlying mechanisms of apoptosis induced in hypoxic/ischemic condition and its treatment methods are unsettled. Cobalt chloride $(CoCl_2)$ has been known to mimic hypoxic condition including the production of ROS. Epigallocatechin gallate (EGCG), a green tea polyphenol, has diverse pharmacologial activities in cell growth and death. This study was aimed to investigate the apoptotic mechanism by $CoCL_2$ and effects of EGCG on $CoCl_2-induced$ apoptosis in PC12 cells. Administration of $CoCl_2$ decreased cell survival in dose- and time-dependent manners and induced genomic DNA fragmentation. Treatment with $100{\mu}M$ EGCG for 30 min before PC12 cells were exposed to $150{\mu}M$ $CoCl_2$, being resulted in the cell viability and DNA fragmentation being rescued. $CoCl_2$ caused morphologic changes such as cell swelling and condensed nuclei whereas EGCG attenuated morphologic changes by $CoCl_2$. EGCG suppressed the apoptotic peak and a loss of ${\Delta}{\psi}_m$ induced by $CoCl_2$. $CoCl_2$ decreased Bcl-2 expression but Bax expression was not changed in $CoCl_2$- treated cells. EGCG attenuated the Bcl-2 underexpression by $CoCl_2$. $CoCl_2$ augumented the cytochrome c release from mitochondria into cytoplasm and increased caspase-8, -9 and caspase-3 activity a marker of the apoptotic executing stage. EGCG ameliorated the incruement in caspase-8, -9 and -3 activity, and cytochrome c release by $CoCl_2$ NAC (N-acetyl-cysteine), a scavenger of ROS, attenuated $CoCl_2-induced$ apoptosis in consistent with those of EGCG. These results suggest that $CoCl_2$ induces apoptotic cell death through both mitochondria- and death receptor-dependent pathway and EGCG has neuroprotective effects against $CoCl_2-induced$ apoptosis in PC12 cells.

  • PDF

The Flavin-Containing Reductase Domain of Cytochrome P450 BM3 Acts as a Surrogate for Mammalian NADPH-P450 Reductase

  • Park, Seon-Ha;Kang, Ji-Yeon;Kim, Dong-Hyun;Ahn, Taeho;Yun, Chul-Ho
    • Biomolecules & Therapeutics
    • /
    • v.20 no.6
    • /
    • pp.562-568
    • /
    • 2012
  • Cytochrome P450 BM3 (CYP102A1) from Bacillus megaterium is a self-sufficient monooxygenase that consists of a heme domain and FAD/FMN-containing reductase domain (BMR). In this report, the reduction of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and 5-cyano-2,3-ditolyl tetrazolium chloride (CTC) by BMR was evaluated as a method for monitoring BMR activity. The electron transfer proceeds from NADPH to BMR and then to BMR substrates, MTT and CTC. MTT and CTC are monotetrazolium salts that form formazans upon reduction. The reduction of MTT and CTC followed classical Michaelis-Menten kinetics ($k_{cat}=4120\;min^{-1}$, $K_m=77{\mu}M$ for MTT and $k_{cat}=6580\;min^{-1}$, $K_m=51{\mu}M$ for CTC). Our continuous assay using MTT and CTC allows the simple, rapid measurement of BMR activity. The BMR was able to metabolize mitomycin C and doxorubicin, which are anticancer drug substrates for CPR, producing the same metabolites as those produced by CPR. Moreover, the BMR was able to interact with CYP1A2 and transfer electrons to promote the oxidation reactions of substrates by CYP1A2 and CYP2E1 in humans. The results of this study suggest the possibility of the utilization of BMR as a surrogate for mammalian CPR.

Pharmacogenomics and Schizophrenia (약물유전체학과 정신분열병)

  • Lee, Kyu Young;Chung, In Won
    • Korean Journal of Biological Psychiatry
    • /
    • v.8 no.2
    • /
    • pp.208-219
    • /
    • 2001
  • The pharmacotherapy of schizophrenia exhibits wide inter-individual variabilities in clinical efficacy and adverse effects. Recently, human genetic diversity has been known as one of the essential factors to the variation in human drug response. This suggests that drug therapy should be tailored to the genetic characteristics of the individual. Pharmacogenetics is the field of investigation that attempts to elucidate genetic basis of an individual's responses to pharmacotherapy, considering drug effects divided into two categories as pharmacokinetics and pharmacodynamics. The emerging field of pharmacogenomics, which focuses on genetic determinants of drug response at the level of the entire human genome, is important for development and prescription of safer and more effective individually tailored drugs and will aid in understanding how genetics influence drug response. In schizophrenia, pharmacogenetic studies have shown the role of genetic variants of the cytochrome P450 enzymes such as CYP2D6, CYP2C19, and CYP2A1 in the metabolism of antipsychotic drugs. At the level of drug targets, variants of the dopamine $D_2$, $D_3$ and $D_4$, and 5-$HT_{2A}$ and 5-$HT_{2C}$ receptors have been examined. The pharmacogenetic studies in schizophrenia presently shows controversial findings which may be related to the multiple involvement of genes with relatively small effects and to the lack of standardized phenotypes. For further development in the pharmacogenomics of schizophrenia, there would be required the extensive outcome measures and definitions, and the powerful new tools of genomics, proteomics and so on.

  • PDF

Constitutive Expression and Changes of Cytochrome P450 Isozymes mRNAs by Vehicles (Petrolatum, DMSO, Ethanol) in Rat Skin Using Semi-quantitative RT-PCR

  • Lee, Ai-Young;Lee, Kyung-Hoon;Ko, Duck-Sung;Chey, Won-Young
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.5 no.5
    • /
    • pp.407-412
    • /
    • 2001
  • Many drugs are primarily metabolized by the cytochrome P450s (CYPs). Drug metabolites would be important allergens for adverse drug reactions such as drug eruptions. Skin tests with a suspected drug have conducted to identify causative drugs of drug eruptions, with vehicles such as white petrolatum, DMSO, ethanol. This study will compare the expression of rat CYP isozyme mRNAs between the skin and the liver, with examining an effect of the vehicles on the cutaneous CYPs using semi-quantitative RT-PCR. Thirty-two Sprague-Dawley rats between the ages of six and eight weeks were divided as four groups. One group was used to compare the constitutive mRNA expression between skin and liver, while the others were to examine the effects of three vehicles. The ratios of expression of CYP1A2, CYP2B1/2, CYP2E1, CYP3A1, and CYP4A1 were significantly higher in the liver than the skin. However, CYP1A1 and CYP2C11 were higher in the skin than liver. The effects of vehicles were quite different; white petrolatum significantly induced CYP1A1 (p=0.012) and CYP2C11 mRNAs, while ethanol inhibited CY P1A1 and CYP2B1/2. DMSO did not make any changes. The results suggest that rat skin can participate in drug metabolism with their own CYP isozymes. The effects of vehicles on the cutaneous CYP expression should not be ignored and may be applied for determination of an appropriate vehicle for certain drug(s).

  • PDF

Molecular Systematics of the Genus Megoura (Hemiptera: Aphididae) Using Mitochondrial and Nuclear DNA Sequences

  • Kim, Hyojoong;Lee, Seunghwan
    • Molecules and Cells
    • /
    • v.25 no.4
    • /
    • pp.510-522
    • /
    • 2008
  • To construct the molecular systematics of the genus Megoura (Hemiptera: Aphididae), DNA based-identification was performed using four mitochondrial and three nuclear DNA regions: partial cytochrome c oxidase I (COI), partial tRNA-leucine + cytochrome c oxidase II (tRNA/COII), cytochrome b (CytB), partial 12S rRNA + tRNA-valine + 16S rRNA (12S/16S), elongation factor-1 alpha ($EF1{\alpha}$), and the internal transcribed spacers 1 and 2 (ITS1, ITS2). Pairwise sequence divergences between taxa were compared, and phylogenetic analyses were performed based on each DNA region separately, and the combined datasets. COI, CytB, $EF1{\alpha}$, ITS1, and ITS2 were relatively effective in determining species and resolving their relationships. By contrast, the sequences of tRNA/COII and 12S/16S were not able to separate the closely related species. CytB and $EF1{\alpha}$ gave better resolution with higher average sequence divergences (4.7% for CytB, 5.2% for $EF1{\alpha}$). The sequence divergence of COI (3.0%) was moderate, and those of the two ITS regions (1.8% for ITS1, 2.0% for ITS2) were very low. Phylogenetic trees were constructed by minimum evolution, maximum parsimony, maximum likelihood, and Bayesian phylogenetic analyses. The results indicated that the phylogenetic relationships between Megoura species were associated with their host preferences. Megoura brevipilosa and M. lespedezae living on Lespedeza were closely related, and M. nigra, monophagous on Vicia venosa, was rather different from M. crassicauda, M. litoralis, and M. viciae, which are oligophagous on Lathyrus and Vicia. The three populations of M. crassicauda formed a clade separated from M. litoralis and M. viciae. Nevertheless M. litoralis and M. viciae, which are morphologically similar, were not separated due to negligible sequence divergence. We discuss the phylogenetic relationships of the Megoura, and the usefulness of the seven DNA regions for determining the species level phylogeny of aphids.

Oleanolic acid 3-acetate, a minor element of ginsenosides, induces apoptotic cell death in ovarian carcinoma and endometrial carcinoma cells via the involvement of a reactive oxygen species-independent mitochondrial pathway

  • Jo, Hantae;Oh, Jeong-Hyun;Park, Dong-Wook;Lee, Changho;Min, Churl K.
    • Journal of Ginseng Research
    • /
    • v.44 no.1
    • /
    • pp.96-104
    • /
    • 2020
  • Objectives: Oleanolic acid, a minor element of ginsenosides, and its derivatives have been shown to have cytotoxicity against some tumor cells. The impact of cytotoxic effect of oleanolic acid 3-acetate on ovarian cancer SKOV3 cells and endometrial cancer HEC-1A cells were examined both in vivo and in vitro to explore the underlying mechanisms. Methods: Cytotoxic effects of oleanolic acid 3-acetate were assessed by cell viability, phosphatidylserine exposure on the cell surface, mitochondrial release of cytochrome C, nuclear translocation of apoptosis-inducing factor, depolarization of mitochondrial transmembrane potential (∆Ψm), and generation of reactive oxygen species (ROS). In vivo inhibition of tumor growth was also assessed with xenografts in immunocompromised mice. Results: Oleanolic acid 3-acetate exhibited potent cytotoxicity toward SKOV3 and HEC-1A cells by decreasing cell viability in a concentration-dependent manner. Importantly, oleanolic acid 3-acetate effectively suppressed the growth of SKOV3 cell tumor xenografts in immunocompromised mice. Furthermore, oleanolic acid 3-acetate induced apoptotic cell death as revealed by loss of ∆Ψm, release of cytochrome c, and nuclear translocation of apoptosis-inducing factor with a concomitant activation of many proapoptotic cellular components including poly(ADP-ribose) polymerase, Bcl-2, and caspases-8, caspase-3, and caspase-7. Oleanolic acid 3-acetate, however, caused a decrease in ROS production, suggesting the involvement of an ROS-independent pathway in oleanolic acid 3-acetate-induced apoptosis in SKOV3 and HEC-1A cells. Conclusion: These findings support the notion that oleanolic acid 3-acetate could be used as a potent anticancer supplementary agent against ovarian and endometrial cancer. Oleanolic acid 3-acetate exerts its proapoptotic effects through a rather unique molecular mechanism that involves an unconventional ROS-independent but mitochondria-mediated pathway.

Physiobiochemical Characteristics of Hybrid Rice (1대 잡종벼의 생리생화학적 특성)

  • Tae, Hyun-Sook;Kim, Kil-Ung;Shin, Dong-Hyun;Wenxiong Lin;Moon, Huhn-Pal
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.40 no.5
    • /
    • pp.608-618
    • /
    • 1995
  • This study was conducted to determine physiobiochemical basis of heterosis using rice hybrids such as Shanyou 63 (Zhenshan 97As Minhui 63) and Teyou 63 (Longtepu A Minhui 63) as compared with inbred rice like Milyang 23. Seed protein patterns of rice hybrid showed complementary genetic characteristics inherited from their parents. Hybrid rice had larger embryo and higher $\alpha$-amylase activity than those of inbred rice. The larger embryo of hybrid was significantly correlated with tillering ability and high number of low node tillers jplant increased by 60~70% in Shanyou 63, leading to higher productive tillers/plant which directly influenced on grain yield of hybrid rice. These characters were further supported by high chlorophyll content in hybrids. Exogenous application of GA$_3$ (0.02 ppm) on inbred rice like Milyang 23, increased significantly $\alpha$-amylase activity, but no effect of GA$_3$ on hybrid rice was observed, indicating that sufficient amount of GA$_3$ is endogenously present in hybrid rice, showing 1 to 3.5 fold higher activity of $\alpha$-amylase in hybrid rice, which trigger heterosis from the germinating stage. Further, activity of cytochrome c oxidase was 2.66 to 5.52 fold higher in hybrid rice than that of inbred rice, indicating that rice hybrids have very active metabolism reflecting vigorous growth starting from the germinating stage, in turn leading to higher tillering ability.

  • PDF