• Title/Summary/Keyword: cylindrical tube

Search Result 179, Processing Time 0.021 seconds

Effect of Wall Proximity on Air Bubbles Rising in Liquid (액체중을 상승하는 공기포의 괸벽영향)

  • Kang, Joon Mo
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.1 no.1
    • /
    • pp.17-25
    • /
    • 1977
  • The purpose of this paper is to clarify the effect of wall proximity on the terminal velocity of single air bubbles in vertical tubes. As an initial step, experiments were conducted to determine the terminal velocity, shape, and path of single air bubbles rising freely in water. The terminal velocity of air bubbles rising through water was measured in cylindrical tubes, rectangular tubes, and parallel plates respectively. The results of effect wall of cylindrical tubes were shown as a dimensionless plot, and may also be used to arrive at a decision regarding the minimum size of tube.

An Upper-Bound Analysis of the Square-Die Forward Extrusion of Regular Polygonal-Shaped Tubes from hollow-Cylindrical Billets at Final Stage (중공 원형 소재로부터 다각형 튜브 제품의 평금형 전방 압출에 대한 최종단계의 상계해석)

  • Kim, Dong Kwon;Cho, Jong Rae;Bae, Won Byong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.11
    • /
    • pp.91-97
    • /
    • 1995
  • In this study, a deformation model for the regular polygonal-shaped tubes from hollow-cylindrical billets is proposed and a kinematically admissible velocity field is obtained from this deformation model. The final stage upper-bound extrusion load and the average extruded length are determined by minimizing the total power consumption with respect to chosen parameters. Experiments have been carried out with hard solder billets at room temperature. The theoretical predictions of the extrusion load are in good agreements with the experimental results and there is generally reasonable agreement in average extruded height between theory and experiment.

  • PDF

Characterization of flow properties of pharmaceutical pellets in draft tube conical spout-fluid beds

  • Foroughi-Dahr, Mohammad;Sotudeh-Gharebagh, Rahmat;Mostoufi, Navid
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.68
    • /
    • pp.274-281
    • /
    • 2018
  • Experimental studies of the hydrodynamic performance of the draft tube conical spout-fluid bed (DCSF) were conducted using pharmaceutical pellets. The experiments were carried out in a DCSF consisted of two sections: (a) a conical section with the cross section of $120mm{\times}250mm$ and the height of 270 mm, (b) a cylindrical section with the diameter of 250 mm and the height of 600 mm. The flow characteristics of solids were investigated with a high speed camera and a pezoresistive absolute pressure transducer simultaneously. These characteristics revealed different flow regimes in the DCSF: packed bed at low gas velocities, fluidized bed in draft tube at higher gas velocities until minimum spouting, and spouted bed. The stable spouting was identified by the presence of two dominant frequencies of the power spectrum density of pressure fluctuation signature: (i) the frequency band 6-9 Hz and (ii) the frequency band 12-15 Hz. The pressure drops across the draft tube as well as the annulus measured in order to better recognize the flow structure in the DCSF. It was observed that the pressure drop across the draft tube, the pressure drop across the annulus, and the minimum spouting velocity increase with the increase in the height of draft tube and distance of the entrainment zone, but with the decrease in the distributor hole pitch. Finally, this study provided novel insight into the hydrodynamic of DCSF, particularly minimum spouting and stable spouting in the DCSF which contains valuable information for process design and scale-up of spouted bed equipment.

Study on the plastic deformation of a cylinder subjected to localized impulsive pressure (국부충격하중을 받는 원관의 삭성변형에 관한 고찰)

  • ;;Zoo, Young Woo
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.5 no.2
    • /
    • pp.131-138
    • /
    • 1981
  • The effect of axial stress on the plastic deformation of rigid-perfectly plastic cylindrical tube under the impulsive band pressure is investigated. It is assumed that the tube is constructed with the material of Tresca's yield criterion. A closed from sloution is obtained for a rectangular pulse shape of uniform band pressure by using the circumscribed yield surface. The analysis shows that the effect ot exial stress is negligible when the dimensionless axial stress(n$\sub$x/= N$\sub$x/.delta.$\sub$y/H) is less than 0.2 or the dimensionless whdth of band pressure(.xi.=C/.root.RH) is greater than 2, but the effect of axial stress is of considerable importance when the axial stress is greater than 0.3 and the width of band pressure is less than 1.

An Experimental Study on Heat Transfer Characteristics with Turbulent Flow in a Cylindrical Annuli (원형이중관내의 난류유동의 열전달 특성에 관한 실험적 연구)

  • Chang, Tae-Hyun;Lee, Kwon-Soo
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.5 no.3
    • /
    • pp.193-200
    • /
    • 2002
  • An experimental study was performed to study heat transfer characteristics for turbulent flow in an axisymmetric annuli. The air flow temperature and the local Nusselt number in turbulent flow were measured or calculated for Re=30,000, 40,000, 50,000, 60,000, 70,000 and 80,000. The local Nusselts number were compared to that obtained from Dittus-Boelter equation with turbulent flow. The results show that the flow enhances the heat transfer in the initial and exit portion of the test tube.

  • PDF

Dynamics of Electrowetting of a Liquid-Liquid Interface in a Cylindrical Tube (원형관내의 액체-액체 계면에 대한 전기습윤 현상의 동적 거동)

  • Kang, Kwan-Hyoung;Chung, Won-Young
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.557-560
    • /
    • 2006
  • The contact angle of a meniscus and a droplet can be controlled by using electrowetting phenomena. We investigated the dynamic aspect of electrowetting for an oil-electrolyte interface formed inside a closed glass tube. A step input voltage is applied and the subsequent motion of the interface is recorded by a high-speed camera. A kind of capillary instability is observed near the three-phase contact line, which could degrade the reliability of device utilizing electrowetting such as electrowetting liquid lens. The dynamics of interface motion for different input voltages and the fluid viscosities are analyzed and discussed based on the experimental results.

  • PDF

An Experimental Study on Temperature and Velocity Fields of the Turbulent Flows Horizontal Cylindrical Tube by Using Thermo-sensitive Liquid Crystal (수평원통 관에서 감온액정을 이용한 난류유동의 온도 및 속도장에 관한 실험적 연구)

  • 장태현;도덕희
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.7
    • /
    • pp.921-929
    • /
    • 2003
  • An experimental investigation was performed to study the characteristics of turbulent water flow in a horizontal circular tube by using liquid crystal. To determine some characteristics of the turbulent flow, 2D PIV technique is employed for velocity measurement and liquid crystal is used for heat transfer experiments in water. Temperature visualization was made quantitatively by calibrating the color of the liquid crystal versus temperature using various approaches (TLC technique: Thermochromic Liquid Crystal), and a neural-network algorithm was applied to the color-to-temperature calibration. This study shoud the temperature and time-mean velocity distribution for Re = 2,436, 2,500 and 2,724 along longitudinal sections and the results appear to be physically reasonable.

An Experimental Study on Heat Transfer Characteristics with Turbulent Swirling Flow Using Uniform Heat Flux in a Cylindrical Annuli

  • Chang, Tae-Hyun;Lee, Kwon-Soo
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.12
    • /
    • pp.2042-2052
    • /
    • 2003
  • An experimental study was performed to investigate heat transfer characteristics of turbulent swirling flow in an axisymmetric annuli. The static pressure, the local flow temperature, and the wall temperature with decaying swirl were measured by using tangential inlet conditions and the friction factor and the local Nusselt number were calculated for Re=30000∼70000. The local Nusselt number was compared with that obtained from the Dittus-Boelter equation with swirl and without swirl. The results showed that the swirl enhances the heat transfer at the inlet and the outlet of the test tube.

Cycle Analysis of an Alkali Metal Thermo-Electric Converter for Small Capillary Type (소형 모세관식 알카리 금속 열전변환소자의 사이클해석)

  • Yoon, Suk-Goo;Ku, Jae-Hyun;Lee, Jae-Keun;Tanaka, Kotaro
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.956-961
    • /
    • 2000
  • This paper describes the design of a small size Alkali Metal Thermal to Electric Converter (AMTEC) which employs a capillary structure for recirculating sodium working fluid. The cycle is based on the simple and small capillary type ${\beta}"$ -alumina and wick tube element. The proposed cell consists of the 37 conversion elements with capillary tube of $50{\mu}m$ in diameter and the sealed cylindrical vessel of 22mm in outer diameter. Results on the cycle analysis of sodium flow and heat transfer in the cell showed that the expected power output was 4.65W and the conversion efficiency was 19% for the source temperature of 900K.

  • PDF

A Three-dimensional Magnetic Field Mapping System for Deflection Yoke of Cathode-Ray Tube

  • Park, K.H.;Yoon, M.;Lee, S.M.;Joo, H.D.;Lee, S.D.;Yang, W.Y.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.868-871
    • /
    • 2002
  • In this paper, we introduce an efficient three-dimensional magnetic field mapping system for a Deflection Yoke (DY) in Cathode-Ray Tube (CRT). A three-axis Hall probe mounted in a small cylindrical bar and three stepping motors placed in a nonmagnetic frame are utilized for the mapping. Prior to the mapping starts, the inner contour of DY is measured by a laser sensor to make a look-up table for inner shape of DY. Three-axis magnetic fields are then digitized by a three-dimensional Hall probe. The results of the mapping can be transformed to various output formats such as multipole harmonics of magnetic fields. Field shape in one, two and three-dimensional spaces can also be displayed. In this paper, we present the features of this mapping device and show some analysis results.

  • PDF