• Title/Summary/Keyword: cylindrical structures

Search Result 511, Processing Time 0.025 seconds

Chloride Penetration in Circular Concrete Columns

  • Morga, M.;Marano, G.C.
    • International Journal of Concrete Structures and Materials
    • /
    • v.9 no.2
    • /
    • pp.173-183
    • /
    • 2015
  • Most of the diffusion models of chloride ions in reinforced concrete (RC) elements proposed in literature are related to an isotropic homogeneous semi-infinite medium. This assumption reduces the mathematical complexity, but it is correct only for plane RC elements. This work proposes a comparison between the diffusion model of chloride ions in RC circular columns and in RC slab elements. The durability of RC cylindric elements estimated with the circular model instead of the plane model is shown to be shorter. Finally, a guideline is formulated to properly use the standard and more simple plane model instead of the circular one to estimate the time to corrosion initiation of cylindrical RC elements.

Cytological Changes of Infected Barley Tissues with Barley Yellow Mosaic Virus (보리호위축병 바이러스에 감염된 보리조직의 세포학적 관찰)

  • So, In-Young;Cheong, Seong-Soo
    • Applied Microscopy
    • /
    • v.20 no.1
    • /
    • pp.120-127
    • /
    • 1990
  • The zoospores of Polymyxa graminis known as vector of barley yellow mosaic virus(BYMV) were found from the rootlets of diseased barley plants. The X-bodies in the lower epidermis of diseased leaf tissues were reddish under fluorescence microscopy. The shape of virus particles was flexuous rod and 300-1,000 nm in length. The pinwheel structures, cylindrical inclusion bodies, ring-form inclusion bodies, and crystalline lattice-like structure were found together with virus particles in the cytoplasm of diseased leaf tissues. Generally, intracellular organelles in the diseased barley leaf tissues infected with BYMV were either not well-developed or degenerated.

  • PDF

Helium Ion Microscopy of Uncoated Pine Leaves

  • Kim, Ki-Woo
    • Applied Microscopy
    • /
    • v.42 no.3
    • /
    • pp.147-150
    • /
    • 2012
  • A recently introduced helium ion microscopy (HIM) was employed to observe uncoated pine leaf specimens. Adult leaves were collected from the seedlings of Pinus densiflora and P. rigida, air-dried at room temperature, and observed by HIM without metal coating. Ovoid or round stomata and distinct Florin rings could be discerned. The epicuticular waxes were present in the epistomatal chambers and Florin rings of stomata on the leaf surface. The epicuticular waxes were mostly straight, cylindrical, and ca. 1 ${\mu}m$ in length. The epistomatal chambers of P. rigida were filled with the epicuticular waxes, whereas those of P. densiflora were not filled with the epicuticular waxes. Based on their micromorphology, the epicuticular wax structures of the pine species were identified as tubules. These results suggest that the HIM could be used for the investigation of the plant stomata and epicuticular waxes of uncoated plant leaves. Due to the smaller ion probe and interaction volume, the HIM has advantages over conventional field emission scanning electron microscopy in terms of image resolution and charge neutralization.

AJM을 이용한 HDM에 의한 잔류응력 계측에 관한 연구 1

  • 이택순
    • Journal of Welding and Joining
    • /
    • v.6 no.3
    • /
    • pp.37-42
    • /
    • 1988
  • The Hole Drilling Method(HDM) is widely used to measure residual stresses in the welded structures. The purpose of this study is to evaluate the accuracy fo measuring residual stresses when drilling the hole by Air-abrasive Jet machine(AJM). Simulated residual stresses wre introduced by applying known stresses to steel bars. These known streses were then compared with measured stresses relaxed from hole drilling. the obtained results are summarized as follows; 1) It was possible to obtain well defined holes with the nozzle designed for this study. 2) If the hole shape is not cylindrical, critical may occur. 3) In the uniaxial strain field, the measurement error of the maximum principal stress was within .+-.10 percent. The orientation angle of the maximum principal stress was within 8.deg. from the given directioin. 4) meausrements were made varying hole depths. Little or no change of stresses occurs since holse were drilled more than the depth of the 0.6 times diameter. 5) The air-abrasive jet machining for drilling holse does not cause appreciable apparent stresses which si critical to measure residual stresses.

  • PDF

Study on the P-Y Curve around the Mono-pile Foundation of Offshore Wind Turbine by Impulsive Breaking Wave Force

  • Go, Myeongjin;Kim, Namhyeong;Ko, Yongsu
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2014.06a
    • /
    • pp.253-254
    • /
    • 2014
  • In offshore, various external forces such as wind force, wave force and impulsive breaking wave force act on offshore structures. Many researches about this forces are published. Kim and Cao(2008) published researche on wave force of vertical cylinder. Kim and Go(2013) performed research on the subgrade reaction by external forces. Among this forces, impulsive breaking force is more massive than other forces, especially. Therefore, the studies about impulsive breaking wave forces have been carried out. Chun and Shim(1999) analyzed dynamic behavior of cylindrical pile subjected to impulsive breaking wave force. In this study, when the impulsive breaking wave force acts on the offshore wind turbine, the subgrade reaction acting on the mono-pile of the offshore wind turbine is calculated by p-y curve. The calculation is carried out to the multi-layered.

  • PDF

Thermal Effect on the Vibration Characteristics of Pretwisted Rotating Blade (열 효과를 고려한 비틀림이 있는 회전 블레이드의 진동 특성)

  • Kee, Young-Jung;Kim, Ji-Hwan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.810-815
    • /
    • 2002
  • Vibration analysis of rotating blade is the main purpose of this study. In the present work, general formulation is proposed to analyze the rotating shell-type structures including the effect of centrifugal force, Coriolis acceleration and initial twist. Furthermore, simplified equations are derived for the case of an open circular cylindrical shell. Based on the concept of degenerated shell element with the Reissner-Mindlin's assumptions, the finite element method is adopted for solving the governing equations. In addition, it is investigated the effect of thermal load on the vibration characteristics of pretwisted blade. Numerical results are summarized for the various parameters such as rotating speed, angle of pretwist and stacking sequence of a composite blade. Also, present results are compared with the previous works and experimental data.

  • PDF

Wind pressure and buckling of grouped steel tanks

  • Portela, Genock;Godoy, Luis A.
    • Wind and Structures
    • /
    • v.10 no.1
    • /
    • pp.23-44
    • /
    • 2007
  • Wind tunnel experiments on small scale groups of tanks are reported in the paper, with the aim of evaluating the pressure patterns due to group effects. A real tank configuration is studied in detail because one tank buckled during a hurricane category 3. Three configurations are studied in a wind tunnel, two with several tanks and different wind directions, and a third one with just one blocking tank. The pressures were measured in the cylindrical part and in the roof of the tank, in order to obtain pressure coefficients. Next, computational buckling analyses were carried out for the three configurations to evaluate the buckling pressure of the target structure. Finally, imperfection-sensitivity was investigated for one of the configurations, and moderate sensitivity was found, with reductions in the maximum load of the order of 25%. The results help to explain the buckling of the tank for the levels of wind experienced during the hurricane.

Flow and dispersion around storage tanks -A comparison between numerical and wind tunnel simulations

  • Fothergill, C.E.;Roberts, P.T.;Packwood, A.R.
    • Wind and Structures
    • /
    • v.5 no.2_3_4
    • /
    • pp.89-100
    • /
    • 2002
  • Accidental gaseous losses from industrial processes can pose considerable health and environmental risks but assessing their health, safety and environmental impact is problematic. Improved understanding and simulation of the dispersion of emissions in the vicinity of storage tanks is required. The present study aims to assess the capability of the turbulence closures and meshing alternatives in a commercially available CFD code for predicting dispersion in the vicinity of cubes and circular cylindrical storage tanks. The performance of the $k-{\varepsilon}$ and Reynolds Stress turbulence models and meshing alternatives for these cases are compared to experimental data. The CFD simulations are very good qualitatively and, in many cases, quantitatively. A mesh with prismatic elements is more accurate than a tetrahedral mesh. Overall the Reynolds stress model performs slightly better than the $k-{\varepsilon}$ model.

Vibro-acoustic analysis of un-baffled curved composite panels with experimental validation

  • Sharma, Nitin;Mahapatra, Trupti R.;Panda, Subrata K.
    • Structural Engineering and Mechanics
    • /
    • v.64 no.1
    • /
    • pp.93-107
    • /
    • 2017
  • The article presents the vibration and acoustic responses of un-baffled doubly curved laminated composite panel structure under the excitation of a harmonic point load. The structural responses are obtained using a simulation model via ANSYS including the effect various geometries (cylindrical, elliptical, spherical and hyperboloid). Initially, the model has been established by solving adequate number of available examples to show the convergence and comparison behaviour of the natural frequencies. Further, the acoustic responses are obtained using an indirect boundary element approach for the coupled fluid-structure analysis in LMS Virtual.lab by importing the natural frequency values. Subsequently, the values for the sound power level are computed using the present numerical model and compared with that of the available published results and in-house experimentally obtained data. Further, the acoustic responses (mean-square velocity, radiation efficiency and sound power level) of the doubly curved layered structures are evaluated using the current simulation model via several numerical experimentations for different structural parameters and corresponding discussions are provided in detail.

Hydraulic Studies on Recirculating Aquaculture Basin (순환여과식 사육수조의 수리학적 연구)

  • LEE Jong-Sup
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.27 no.2
    • /
    • pp.173-182
    • /
    • 1994
  • A numerical experiment on the effective discharge of waste materials caused in recirculating aquaculture basins was performed. The numerical model used in this study was a 4-level hydrodynamic and advection-diffusion model. Flow structures and settling processes of ss in the various mathematical model basins are discussed. The calculated flow fields of the numerical basin corresponded well with the measured velocity in field basin. In the cases of steep bottom slopes in 4/30, the non-dimensional tractive force($U{\ast}/U{\ast}_c$) which is all important parameter for the deposition pattern of waste materials was stronger than with the mild slope one. The settling pattern of ss depended considerably on the degree of bottom slope of basin. To concentrate deposited waste materials into the center discharge pipe, it is useful to design a cylindrical basin with a steeply conical bottom. In addition, to prevent movement of the deposit area away from the center, it is necessary to locate the circulating ducts at diametrically opposed points on the basin sides.

  • PDF