• Title/Summary/Keyword: cylindrical pore

Search Result 84, Processing Time 0.024 seconds

Fabrication of Cylindrical Macroporous Silicon and Diaphragms (원통형 메크로기공을 갖는 다공질 실리콘과 다이어프램의 제작)

  • 민남기;이치우;하동식;정우식
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.8
    • /
    • pp.620-627
    • /
    • 1998
  • For chemical microsensors such as humidity and gas sensors, it is essential to obtain a single pore with a large inner surface and straight structure. In this paper, cylindrical macroporous silicon layers have been formed of p-silicon substrate by anodization in HF-ethanol-water solution with an applied current. The pores grew normal to the (100) surface and were uniformly distributed. The pore diameter was approximately $1.5~2{\mu}m$ with a depth of $20~30{\mu}m$ and the pores were not interconnected, which are in sharp contrast to the porous silicon reported previouly for similarly doped p-Si. Porous silicon diaphragms 18 to $200{\mu}m$ thick were formed by anistropic etching in TMAH solution and then anodization. The fabrication of macroporous silicon and free-standing diaphragms is expected to offer applications for microsensors, micromachining, and separators.

  • PDF

Theoretical resistance in cylindrical electrodes with conical tip

  • Hong, Chang-Ho;Kim, Jin-Seop;Chong, Song-Hun
    • Geomechanics and Engineering
    • /
    • v.30 no.4
    • /
    • pp.337-343
    • /
    • 2022
  • The electrical resistivity method is a well-known geophysical method for observing underground conditions, (such as anomalies) and the properties of soil and rock (such as porosity, saturation, and pore fluid characteristics). The shape of electrodes used in an electrical resistivity survey depends on the purpose of the survey and installation conditions. Most electrodes for field applications are cylindrical for sufficient contact with the ground, while some are conically sharpened at their tips for convenient penetration. Previous study only derived theoretical equations for rod-shaped electrodes with spherical tips. In this study, the theoretical resistance for two cylindrical electrodes with conical tips is derived and verified experimentally. The influence of the penetration depth and tip on the measurement is also discussed.

Synthesis of New Black Pigment; Carbon Black Pigment Capsulated into the Meso-pore of Silica as Black Pigment in Cosmetic (새로운 Black Color의 합성;화장품에서 블랙 색소로서 Meso-pore Silca에 캡슐레이션된 Carbon-black Silica)

  • Hye-in, Jang;Kyung-chul, Lee;Hee-chang , Ryoo
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.30 no.2
    • /
    • pp.189-195
    • /
    • 2004
  • Carbon black have not been used as pigment material in cosmetic because of very low density and dispersity, but carbon black have applicable character as black pigment because of non-toxic, stable physico-chemical property, and black colority. In this study, mesoporous silica samples were synthesized by sol-gel reaction using surfactants-template method; TEOS (tetraethoxysilane) - a) PEO/lecithin, b) PEO/polyethylene glycol, c) lecithin/polyethylene glycol in ethanol/water solution. Synthesized organic-inorganic hybrid - silica were heat-treated in N2 condition at 500$^{\circ}C$. Mesoporous silica with black carbon in pore have the effective density and show the good dispersity in both hydrophilic and hydrophobic solvent. Properties of the samples were measured; specific surface area (750㎡/g) and pore size (4-6nm) using BET, pore structure (cylindrical type) using XRD, morphology (spherical powder with 0.1-0.5$\mu\textrm{m}$ partical size) of the samples using SEM. Carbon-silica black color applied to mascara, it shows a dark black colority and good dispersity as compared with the general black color titania pigment. Moreover, it is possible to control the density of black color pigment because it is possible to control pore volume and particle size of mesoporous silica properly. It show the good volume effects in mascara. That is why possible to apply all kinds of cosmetic products.

Analysis of permeability in rock fracture with effective stress at deep depth

  • Lee, Hangbok;Oh, Tae-Min;Park, Chan
    • Geomechanics and Engineering
    • /
    • v.22 no.5
    • /
    • pp.375-384
    • /
    • 2020
  • In this study, the application of conventional cubic law to a deep depth condition was experimentally evaluated. Moreover, a modified equation for estimating the rock permeability at a deep depth was suggested using precise hydraulic tests and an effect analysis according to the vertical stress, pore water pressure and fracture roughness. The experimental apparatus which enabled the generation of high pore water pressure (< 10 MPa) and vertical stress (< 20 MPa) was manufactured, and the surface roughness of a cylindrical rock sample was quantitatively analyzed by means of 3D (three-dimensional) laser scanning. Experimental data of the injected pore water pressure and outflow rate obtained through the hydraulic test were applied to the cubic law equation, which was used to estimate the permeability of rock fracture. The rock permeability was estimated under various pressure (vertical stress and pore water pressure) and geometry (roughness) conditions. Finally, an empirical formula was proposed by considering nonlinear flow behavior; the formula can be applied to evaluations of changes of rock permeability levels in deep underground facility such as nuclear waste disposal repository with high vertical stress and pore water pressure levels.

Nanostructures of Block Copolymer under Confined Geometry

  • Jo, Won-Ho;Huh, June
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.73-73
    • /
    • 2006
  • We investigate the influence of the confinement on the mesophase formation of diblock copolymer caged in a cylindrical pore in which the surface of the pore preferentially attracts one of the blocks. Using cell dynamics simulation, we construct phase maps as a function of the composition of diblock copolymer (f) and the pore diameter (D) relative to the period at bulk ($L_{o}$). Depending on f and $D/L_{o}$, we observe a variety of confinement-induced mesophases ranging from a simple dartboard-like structure to more complicated structures involving various forms of helices or doughnuts.

  • PDF

Synthesis of Ordered Mesoporous Manganese Oxides by Double Replication for Use as an Electrode Material

  • Guo, Xiao-Feng;Kim, Geon-Joong
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.1
    • /
    • pp.186-190
    • /
    • 2011
  • Periodically ordered mesoporous manganese oxides were synthesized in a single and double replication procedure. Mesoporous SBA-15 and -16 silica and their reverse replica carbons were successively used as hard templates. The silica and carbon pore systems were infiltrated with $Mn(NO_3)_2{\cdot}xH_2O$ or $Mn(AcAc)_2$, which was then converted to $Mn_2O_3$ at 873 K; the silica and carbon matrix were finally removed by NaOH solution or calcinations in air. The structure of the mesoporous $Mn_2O_3$, using a carbon template, corresponds to that of the original SBA-15 and SBA-16 silica. The products consist of hexagonally arranged cylindrical mesopores with crystalline pore walls or cubic mesoporous pores. The structure of replica has been confirmed by XRD, TEM analysis, and its electrochemical properties were tested with cyclic voltammetry. Formation of $Mn_2O_3$ inside the mesoporous carbon pore system showed much improved electrical properties.

Fabrication of Lotus Nickel Through Thermal Decomposition Method of Compounds under Ar Gas Atmosphere

  • Kim, Sang-Youl;Hur, Bo-Young;Nakajima, Hideo
    • Korean Journal of Materials Research
    • /
    • v.19 no.5
    • /
    • pp.270-275
    • /
    • 2009
  • Lotus-type porous nickel with cylindrical pores was fabricated by unidirectional solidification under an Ar gas atmosphere using the thermal decomposition method of the compounds such as sodium hydroxide, calcium hydroxide, calcium carbonate, and titanium hydride. The decomposed gas does form the pores in liquid nickel, and then, the pores become the cylindrical pores during unidirectional solidification. The decomposed particles from the compounds do play a rule on nucleation sites of the pores. The behavior of pore growth was controlled by atmosphere pressure, which can be explained by Boyle's law. The porosity and pore size decreased with increasing Ar gas pressure when the pores contain hydrogen gas decomposed from calcium and sodium hydroxide and titanium hydride, ; however it they did not change when the pores contain containing carbon dioxide decomposed from calcium carbonate. These results indicate that nickel does not have the solubility of carbon dioxide. Lotus-type porous metals can be easily fabricated by the thermal decomposition method, which is superior to the conventional fabrication method used to pressurized gas atmospheres.

Study on the Synthesis of Alumina Membrane by Anodization in Sulfuric Acid (황산전해액에서 양극산화에 의한 알루미나 막 제조에 관한 연구)

  • Kim, Hyun;Chang, Yoon Ho;Hahm, Yeong Min
    • Applied Chemistry for Engineering
    • /
    • v.8 no.5
    • /
    • pp.756-762
    • /
    • 1997
  • The experiment was carried out to fabricate alumina membrane which has a cylindrical pore structure by anodizing aluminium plate in sulfuric acid solution with the electrochemical technique. The aluminium plate for anodizing was prepared by the pretreatment process such as chemical, electro-polishing and thermal treatment. The pore size distribution and the film thickness of alumina membrane were investigated by the implementation of scanning electron microscope(SEM) and BET method. The results show that the oxide film has a geometrical structures like a Keller model and that the membrane has a uniform pore distribution. The pore size and the oxide film thickness are dependent on the anodizing process variables such as the electrolyte concentration, the reation temperature and the anodizing current density.

  • PDF

Harvesting of microalgae via submerged membranes: flux, fouling and its reversibility

  • Elcik, Harun;Cakmakci, Mehmet
    • Membrane and Water Treatment
    • /
    • v.8 no.5
    • /
    • pp.499-515
    • /
    • 2017
  • The purpose of this study was to investigate membrane fouling caused by microalgal cells in submerged membrane systems consisting of polymeric and ceramic microfiltration membranes. In this study, one polymeric (flat-sheet, pore size: $0.2{\mu}m$) and two ceramic (flat-sheet, pore size: $0.2{\mu}m$ and cylindrical, pore size: $1{\mu}m$) membranes were used. Physical cleaning was performed with water and air to determine the potential for reversible and irreversible membrane fouling. The study results showed that substantial irreversible membrane fouling (after four filtration cycles, irreversible fouling degree 27% (cleaning with water) and 38% (cleaning with air)) occurs in the polymeric membrane. In cleaning studies performed using water and air on ceramic membranes, it was observed that compressed air was more effective (recovery rate: 87-91%) for membrane cleaning. The harvesting performance of the membranes was examined through critical flux experiments. The critical flux values for polymeric membrane with a pore size of $0.20{\mu}m$ and ceramic membranes with a pore size of $0.20{\mu}m$ and $1{\mu}m$ were ${\leq}95L/m^2hour$, ${\leq}70L/m^2hour$ and ${\leq}55L/m^2hour$, respectively. It was determined that critical flux varies depending on the membrane material and the pore size. To obtain more information on membrane fouling caused by microalgal cells, the characterization of the fouled polymeric membrane was performed. This study concluded that ceramic membranes with a pore size of $0.2-1{\mu}m$ in the submerged membrane system could be efficiently used for microalgae harvesting by cleaning the membrane with compressed air at regular intervals.