• 제목/요약/키워드: cylindrical helix

검색결과 14건 처리시간 0.024초

ERROR ANALYSIS FOR APPROXIMATION OF HELIX BY BI-CONIC AND BI-QUADRATIC BEZIER CURVES

  • Ahn, Young-Joon;Kim, Philsu
    • 대한수학회논문집
    • /
    • 제20권4호
    • /
    • pp.861-873
    • /
    • 2005
  • In this paper we approximate a cylindrical helix by bi-conic and bi-quadratic Bezier curves. Each approximation method is $G^1$ end-points interpolation of the helix. We present a sharp upper bound of the Hausdorff distance between the helix and each approximation curve. We also show that the error bound has the approximation order three and monotone increases as the length of the helix increases. As an illustration we give some numerical examples.

볼 엔드밀의 헬릭스 각도에 따른 STD 11 소재의 표면 거칠기에 관한 연구 (A study on the surface roughness of STD 11 material according to the helix angle of ball endmill)

  • 김종수
    • Design & Manufacturing
    • /
    • 제17권1호
    • /
    • pp.33-39
    • /
    • 2023
  • The ball end mill is a type of cutting tool that is widely used to process complex mold shapes including aspheric surfaces. Unlike the flat end mill in which the cutting edge is formed on the cylindrical handle, the cutting edge is formed from the cylindrical handle to the hemispherical shape, which is advantageous for processing curved shapes. However, since the cutting speed continuously changes during machining due to the helix angle of the cutting edge or the machining inclination angle, it is difficult to obtain a precise machined surface. Therefore, in this paper, machining was performed while changing the helix angle of the ball end mill and the angle of the machining slope under the same cutting conditions for STD 11 material, which is widely used as a mold material. Through this, the effect of the two variables on the roughness of the machined surface was analyzed. As a result, if the helix angle was 0 degrees, it showed the best surface roughness of Ra. 0.16 ㎛. When the helix angle was 20 degrees, the best surface roughness of Ra. 0.18 ㎛ was occurred.

  • PDF

Oligomer Model of PB1 Domain of p62/SQSTM1 Based on Crystal Structure of Homo-Dimer and Calculation of Helical Characteristics

  • Lim, Dahwan;Lee, Hye Seon;Ku, Bonsu;Shin, Ho-Chul;Kim, Seung Jun
    • Molecules and Cells
    • /
    • 제42권10호
    • /
    • pp.729-738
    • /
    • 2019
  • Autophagy is an important process for protein recycling. Oligomerization of p62/SQSTM1 is an essential step in this process and is achieved in two steps. Phox and Bem1p (PB1) domains can oligomerize through both basic and acidic surfaces in each molecule. The ZZ-type zinc finger (ZZ) domain binds to target proteins and promotes higher-oligomerization of p62. This mechanism is an important step in routing target proteins to the autophagosome. Here, we determined the crystal structure of the PB1 homo-dimer and modeled the p62 PB1 oligomers. These oligomer models were represented by a cylindrical helix and were compared with the previously determined electron microscopic map of a PB1 oligomer. To accurately compare, we mathematically calculated the lead length and radius of the helical oligomers. Our PB1 oligomer model fits the electron microscopy map and is both bendable and stretchable as a flexible helical filament.

중소구경 헬리컬 파일의 축과 원판의 형상이 지지력에 미치는 영향 평가 : II. 이론식과 토크에 의한 지지력 예측 비교 (Effect of Configuration of Shaft and Helix Plate on Bearing Capacity of Moderate-size Helical Pile : II. Bearing Capacity Prediction)

  • 이종원;이동섭;나경욱;최항석
    • 한국지반신소재학회논문집
    • /
    • 제13권2호
    • /
    • pp.41-47
    • /
    • 2014
  • 헬리컬 파일은 나선형 원판이 부착된 철제 축과 나선형 원판이 모두 지지력을 발휘하기 때문에 지지력을 예측하는데 있어 기존의 일반적인 말뚝과는 다른 다양한 산정법이 적용되고 있다. 대표적으로 Individual bearing method, Cylindrical shear method, Torque correlation method가 사용되고 있다. 본 연구에서는 국내 지반에 시공된 중소구경 헬리컬 파일의 지지력을 예측하는데 있어 적절한 지지력 산정 방법을 검토하기 위해 연계논문의 현장 정재하시험에서 측정된 지지력과 3가지 방법으로 예측한 지지력을 비교 분석하였다. 비교 결과, 실측 지지력이 Individual bearing method와 Cylindrical shear method로 예측한 지지력의 최대값과 최소값 사이에 위치함을 확인하였으며, 상대적으로 Torque correlation method으로 예측한 결과가 실측지지력과 가장 유사함을 보였다.

Dynamic analysis of helicoidal bars with non-circular cross-sections via mixed FEM

  • Eratli, Nihal;Yilmaz, Murat;Darilmaz, Kutlu;Omurtag, Mehmet H.
    • Structural Engineering and Mechanics
    • /
    • 제57권2호
    • /
    • pp.221-238
    • /
    • 2016
  • One of the objectives of this study is to implement the direct calculation of the torsional moment of inertia for non-circular cross-sections, which is based on the St. Venant torsion formulation and the finite element method. Recently the proposed method provides a unique calculation of the torsional rigidity of simply and multiply connected cross-sections. Next, free vibration analyses of cylindrical and non-cylindrical helices with non-circular cross-sections are solved by a curved two-nodded mixed finite element based on the Timoshenko beam theory. Some thin-thick closed or open sections are handled and the natural frequencies of cylindrical and non-cylindrical helices are compared with the literature and the commercial finite element program SAP2000.

Numerical determination of wind forces acting on structural elements in the shape of a curved pipe

  • Padewska-Jurczak, Agnieszka;Szczepaniak, Piotr;Bulinski, Zbigniew
    • Wind and Structures
    • /
    • 제30권1호
    • /
    • pp.15-27
    • /
    • 2020
  • This paper reports the study on development and verification of numerical models and analyzes of flow at high speed around structural elements in the shape of a curved pipe (e.g., a fragment of a water slide). Possibility of engineering estimation of wind forces acting on an object in the shape of a helix is presented, using relationships concerning toroidal and cylindrical elements. Determination of useful engineering parameters (such as aerodynamic forces, pressure distribution, and air velocity field) is presented, impossible to obtain from the existing standard EN 1991-1-4 (the so-called wind standard). For this purpose, flow at high speed around a torus and helix, arranged both near planar surface and high above it, was analyzed. Analyzes begin with the flow around a cylinder. This is the simplest object with a circular cross-section and at the same time the most studied in the literature. Based on this model, more complex models are analyzed: first in the shape of half of a torus, next in the shape of a helix.

인체 공동 내부 수술용 로봇을 위한 이미지기반 레지스트레이션 알고리즘 (Numerical Algorithms of Image Registration for Intra-Cavity Surgical Robots)

  • 이상윤;신승하;안재범;주진만
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.714-719
    • /
    • 2004
  • This paper presents two numerical algorithms for registration of cross-sectional medical images such as CT (Computerized Tomography) or MRI (Magnetic Resonance Imaging) by using geometrical information from helix or line fiducials. The registration algorithms are designed to be used for a surgical robot working inside cavities of human body. A cylindrical device with a combination of line and helix fiducials were also devised and is supposed to be attached to the end-effector of surgical robot. The algorithms and the fiducial pattern were tested in various computer-simulated situations, and the results indicate excellent overall registration accuracy.

  • PDF

Supramolecular Assembly toward Organic Nanostructures

  • Lee, Myong-Soo
    • 한국고분자학회:학술대회논문집
    • /
    • 한국고분자학회 2006년도 IUPAC International Symposium on Advanced Polymers for Emerging Technologies
    • /
    • pp.173-173
    • /
    • 2006
  • We have explored a strategy to control the supramolecular nano-structures self-assembled from rigid segments through attachment of flexible chains through microphase separation and anisotropic arrangement. Supramolecular structures formed by self-assembly of rigid building blocks can be precisely controlled from 1-D layered, 3-D bicontinuous cubic to 2-D cylindrical structures by systematic variation of the type and relative length of the respective blocks. Furthermore, depending on the individual molecular architectures, rigid building blocks self-assemble into a wide range of supramolecular structures such as honeycomb, disk, cylinder, helix, tube, barrel stave, and nano-cage.

  • PDF

헬리컬 기어의 냉간단조에 관한 상계해석 (II) (Upper-bound Analysis for Cold Forging of Helical Gear ( II ))

  • 최재찬;탁성준;최영
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1996년도 추계학술대회 논문집
    • /
    • pp.144-149
    • /
    • 1996
  • In this paper, the clamping type forging of helical gears has been investigated. Clamping type forging is an operation in which the product is constrained to extrude sideways through an orifice in the container wall. Punch is cylindrical shaped. The punch compresses a cylindrical billet placed in a die insert. As a consequence the material flows in a direction perpendicular to that of punch movement. The forging has been analysed by using the upper-bound method. A kinematically admissible velocity field has been developed, wherein, an involute curve has been introduced to represent tooth profile of the gear. Numerical calculations have been carried out to investigate the effects of various parameters, such as module, number of teeth, helix angle, friction factor and initial height of billet on the forging of helical gears.

  • PDF

Energy absorption characteristics of diamond core columns under axial crushing loads

  • Azad, Nader Vahdat;Ebrahimi, Saeed
    • Steel and Composite Structures
    • /
    • 제21권3호
    • /
    • pp.605-628
    • /
    • 2016
  • The energy absorption characteristics of diamond core sandwich cylindrical columns under axial crushing process depend greatly on the amount of material which participates in the plastic deformation. Both the single-objective and multi-objective optimizations are performed for columns under axial crushing load with core thickness and helix pitch of the honeycomb core as design variables. Models are optimized by multi-objective particle swarm optimization (MOPSO) algorithm to achieve maximum specific energy absorption (SEA) capacity and minimum peak crushing force (PCF). Results show that optimization improves the energy absorption characteristics with constrained and unconstrained peak crashing load. Also, it is concluded that the aluminum tube has a better energy absorption capability rather than steel tube at a certain peak crushing force. The results justify that the interaction effects between the honeycomb and column walls greatly improve the energy absorption efficiency. A ranking technique for order preference (TOPSIS) is then used to sort the non-dominated solutions by the preference of decision makers. That is, a multi-criteria decision which consists of MOPSO and TOPSIS is presented to find out a compromise solution for decision makers. Furthermore, local and global sensitivity analyses are performed to assess the effect of design variable values on the SEA and PCF functions in design domain. Based on the sensitivity analysis results, it is concluded that for both models, the helix pitch of the honeycomb core has greater effect on the sensitivity of SEA, while, the core thickness has greater effect on the sensitivity of PCF.