• Title/Summary/Keyword: cylinders

Search Result 1,174, Processing Time 0.021 seconds

Design Evaluation of Pickup Device Collecting Deep-Sea-Manganese Nodules (심해저 망간단괴 집광기 채집장치의 설계평가)

  • Choi, Jong-Soo;Lee, Tae-Hee;Hong, Sub;Sim, Jae-Yong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.3
    • /
    • pp.68-74
    • /
    • 1998
  • Performance and efficiency of deep seabed collector is a primary factor for feasibility of commercial deep ocean mining. The efficiency of manganese nodules collector depends on vehicle mobility relative to undulating seafloor and is attributed pickup head to keep altitude and elevation of it against seafloor. For this reason, motion control of pickup head relative to the changing deep-sea topography and other disturbances is of particular importance in design of pickup device. The concept of design axiom is applied to a pickup device of hybrid type in order to evaluate the concept design. Kinematic analysis conducted in absolute Cartesian coordinates gives position, velocity, and acceleration of the hydraulic cylinders which enable the pickup head to keep the preset optimal distance from seafloor. Inverse dynamic analysis provides the driving forces of hydraulic cylinders and the reaction forces at each joint. Design sensitivity analysis is performed in order to investigate the effects of possible design variables on the change of the maximum strokes of hydraulic cylinders. The direct differentiation method is used to obtain the design sensitivity coefficients.

  • PDF

The aerodynamic characteristics of twin column, high rise bridge towers

  • Ricciardelli, Francesco;Vickery, Barry J.
    • Wind and Structures
    • /
    • v.1 no.3
    • /
    • pp.225-241
    • /
    • 1998
  • The high-rise supporting towers of long-span suspension and cable-stayed bridges commonly comprise a pair of slender prisms of roughly square cross-section with a center-to-centre spacing of from perhaps 2 to 6 widths and connected by one or more cross-ties. The tower columns may have a constant spacing as common for suspension bridges or the spacing may reduce towards the top of the tower. The present paper is concerned with the aerodynamics of such towers and describes an experimental investigation of the overall aerodynamic forces acting on a pair of square cylinders in two-dimensional flow. Wind tunnel pressure measurements were carried out in smooth flow and with a longitudinal intensity of turbulence 0.10. Different angles of attack were considered between $0^{\circ}$ and $90^{\circ}$, and separations between the two columns from twice to 13 times the side width of the column. The mean values of the overall forces proved to be related to the bias introduced in the flow by the interaction between the two cylinders; the overall rms forces are related to the level of coherence between the shedding-induced forces on the two cylinders and to their phase. Plots showing the variation of the force coefficients and Strouhal number as a function of the separation, together with the force coefficients spectra and lift cross-correlation functions are presented in the paper.

A numerical investigation of the effects of Reynolds number on vortex-induced vibration of the cylinders with different mass ratios and frequency ratios

  • Kang, Zhuang;Zhang, Cheng;Chang, Rui;Ma, Gang
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.2
    • /
    • pp.835-850
    • /
    • 2019
  • The numerical simulations for the Vortex-induced Vibration (VIV) of the cylinders with different combinations of mass ratio and frequency ratio were performed under the Reynolds (Re) number ranges of 1450-10200, 5800-40800 and 13050-91800 by using the embedded programs in OpenFoam. By combining with the modified SST k-ω turbulence model, the coupled Unsteady Reynolds-Average Navier-Stokes equations and double-degree-of-freedom vibration equations were solved. After analyzing the results, it is found that the some characteristics of the VIV have changed with the increase of the range of Re number, and the effects of Re number on vibration characteristics are also different under different combinations of mass ratio and frequency ratio. On this basis, the influence law of Re number on the characteristics of VIV of the cylinders is summarized, which can provide a reference for the research of VIV under higher Re number.

Motion Synchronization Algorithm using Sinusoidal Characteristics for a Dual-cylinder Mold Oscillator (몰드 오실레이터 이중구조 실린더의 정현파 진동 특성을 이용한 위치동기화 알고리즘 개발)

  • Kim, Seung Hun;Choi, Doo Chul;Kong, NamWoong;Kim, Sang Woo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.8
    • /
    • pp.729-734
    • /
    • 2015
  • Improvement in the control strategy for continuous casting is a crucial requirement to enhance the slab's quality and to increase productivity. The mold oscillator adopts the dual cylinders due to its heavy weight, so the synchronized motion of two cylinders is an important aspect when precise control is needed. The conventional method uses the master-slave control applied to the valve input reference, but the synchronization performance should still be improved. This paper proposes a novel synchronization algorithm for dual cylinders used in a mold oscillator. The master-slave concept is applied to the target reference position, that is, the slave target reference position is controlled to match the slave cylinder's position with the master cylinder's position. In the simulation based on a Simulink model, the proposed algorithm shows a better synchronization performance in aspect of the mean of the absolute error and the peak synchronization error.

Optimum Design of a Viscous-driven Micropump with Tandem Rotating Cylinders (한 쌍의 실린더를 가진 점성구동 마이크로 펌프의 최적설계)

  • Choi, Hyung-Il;Kim, Ki-Dong;Cho, Il-Dae;Choi, Dong-Hoon;Maeng, Joo-Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.4
    • /
    • pp.378-385
    • /
    • 2004
  • Viscous-driven pumping is a very promising type in microscale applications. However, there exist a few disadvantages such as low efficiency and small volume flow rate. In the present study, a pump with tandem rotating cylinders and its optimum synthesis are proposed fur enhancing pumping performance. First, using an unstructured grid CFD method, we investigate the effects of geometrical parameters and then the performance of the pump with tandem cylinders is evaluated. Next, an optimum design synthesis tool is constructed by combining the aforementioned CFD analysis model with the mathematical optimization model, namely, Modified Method of Feasible Directions (MMFD). This technique is used to optimize the geometrical parameters of the pump, fur maximizing pumping efficiency. From the optimization results, it is believed that the present optimum synthesis is robust and has a potential fur other microfluidic device design.

Scattering of a Normally Incident Monochromatic Light by Optically Active Concentric Double Cylinders: II. Numerical Result (광학활성 동축 이중 원통을 수직하게 비추는 단색 빛의 산란 : II. 수치 계산 결과)

  • Kim, Hyun-Woo;Kim, Jin-Seung
    • Korean Journal of Optics and Photonics
    • /
    • v.20 no.6
    • /
    • pp.375-380
    • /
    • 2009
  • The scattering of a normally incident monochromatic light by optically active concentric double cylinders is studied by using a numerical method. A numerical code is developed on the basis of the analytical solutions, and the angular distributions of the intensity and the polarization of the scattered light are computed for some specific cases. The numerical code can be used to non-invasively determine the size, structure, and composition of a double cylinder with high accuracy by measuring the angular distribution of the scattered light by an experiment.

Investigation of the Effect of Water Depths on Two-dimensional Hydrodynamic Coefficients for Twin-hull Sections (쌍동체(雙胴體)에 작용(作用)하는 2차원 유체력계수(流體力係數)의 수심(水深)의 변화(變化)에 따른 영향(影響)에 관한 고찰(考察))

  • K.P.,Rhee
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.19 no.4
    • /
    • pp.39-45
    • /
    • 1982
  • A floating rig, which has been used to develop the ocean resources has a common characteristics with the catamaran ship that it is composed of the two simple hulls. So the motion responses of the floating rig can be predicted theoretically with the aid of the strip method as those of the catamaran. And for the strip method, the two-dimensional hydrodynamic coefficients are the most important inputs to predict the results accurately. In this report, a theoretical method is proposed for calculating two-dimensional hydrodynamic forces and moments acting upon arbitrary shaped twin-hull cylinders, which are forced to make a heaving, swaying and rolling oscillation about their mean position on the free surface of a finite depth water. The theoretical results by making use of the singularity distribution method are presented. The accuracy of the coefficients was confirmed to be reasonable by the comparison with the Ohkusu's results for two circular cylinders in an infinite depth water. The depth effects on two-dimensional hydrodynamic coefficients for two circular cylinders are also checked. In some range of wave numbers, large differences in the behavior of hydrodynamic coefficients between for a finite depth and for an infinite depth are shown.

  • PDF

Ultimate strength and strain models proposed for CFRP confined concrete cylinders

  • Berradia, Mohammed;Kassoul, Amar
    • Steel and Composite Structures
    • /
    • v.29 no.4
    • /
    • pp.465-481
    • /
    • 2018
  • The use of external carbon-fiber-reinforced polymer (CFRP) laminates is one of the most effective techniques existing for the confinement of circular concrete specimens. Currently, several researches have been made to develop models for predicting the ultimate conditions of this type of confinement. As most of the major existing models were developed based on limited experimental database. This paper presents the development of new confinement ultimate conditions, strength and strain models, for concrete cylinders confined with CFRP composites based on a statistical analysis of a large existing experimental database of 310 cylindrical concrete specimens wrapped with CFRP. The database is used to evaluate the performance of the proposed and major existing strength and strain models. Based on the two different statistical indices, the coefficient of determination ($R^2$) and the Root Mean Square Error (RMSE), the two proposed confinement ultimate conditions presents a good performance compared to the major existing models except the models of Lam and Teng (2003) and Youssef et al. (2007) which have relatively similar performance to the proposed models.

Flow-induced vibrations of three circular cylinders in an equilateral triangular arrangement subjected to cross-flow

  • Chen, Weilin;Ji, Chunning;Alam, Md. Mahbub;Xu, Dong
    • Wind and Structures
    • /
    • v.29 no.1
    • /
    • pp.43-53
    • /
    • 2019
  • Vortex-induced vibration of three circular cylinders (each of diameter D) in an equilateral triangular arrangement is investigated using the immersed boundary method. The cylinders, with one placed upstream and the other two side-by-side downstream, are free to vibrate in the cross-flow direction. The cylinder center-to-center spacing L is adopted as L/D = 2.0. Other parameters include the Reynolds number Re = 100, mass ratio $m^*=2.0$, reduced velocity $U_r=2{\sim}15$ and damping ratio ${\zeta}=0$. Cylinder vibration responses are dependent on $U_r$ and classified into five regimes, i.e. Regime I ($U_r{\leq}3.2$), Regime II ($3.2<U_r{\leq}5.0$), Regime III ($5.0<U_r{\leq}6.4$), Regime IV ($6.4<U_r{\leq}9.2$) and Regime V ($U_r>9.2$). Different facets of vibration amplitude, hydrodynamic forces, wake patterns and displacement spectra are extracted and presented in detail for each regime.

A Study on the Improvement of Hydrogen Detection Inspection Method of Hydrogen Cylinder on Hydrogen Bus (수소버스 사용 내압용기 수소검출량 검사방법 개선을 위한 연구)

  • Kim, Hyunjun;Weo, Unseok;Jo, Hyunwoo;Lee, Hyeoncheol;Hwang, Taejun;Lee, Hosang;Ryu, Ikhui;Choi, Sookwang;Oh, Youngkyu;Park, Sungwook
    • Journal of Auto-vehicle Safety Association
    • /
    • v.13 no.1
    • /
    • pp.51-56
    • /
    • 2021
  • As hydrogen is classified as an eco-friendly fuel, vehicles using hydrogen fuel are being developed worldwide. Vehicle fuel hydrogen is stored in cylinders at 70 MPa, so there is a high risk of explosion. Therefore, it is important to inspect hydrogen cylinders in used-vehicles. This study was conducted to improve the inspection method of the cylinders currently mounted on used-hydrogen buses. The inspection method is an image analysis method using a camera. Calcaulation algorithm was developed to quantitatively chech the amount of hydrogen leakage by the image method. As a result of adding a contact angle element to the calculation algorithm suggested by the GTR regulation and comparing it with the experimental data of the GTR regulation, the algorithm reliability was 94%, which secured similarity.