• Title/Summary/Keyword: cylinders

Search Result 1,174, Processing Time 0.031 seconds

The Boundary Element Analysis of Wave Force acting on Multiple Cylinders

  • Kim, Nam-Hyeong;Cao, Tan Ngooc Than;Yang, Soon-Bo
    • Journal of Navigation and Port Research
    • /
    • v.36 no.7
    • /
    • pp.561-569
    • /
    • 2012
  • In this paper, the boundary element method is applied to solve the diffraction of waves by multiple vertical cylinders under the assumption of linear wave theory. A numerical analysis by boundary element method is based on Green's theorem and introduced to an integral equation for the fluid velocity potential around the cylinders. The numerical results obtained in this study are compared with the experimental data and the results of the theory using multiple scattering techniques. The comparisons show strong agreement. This numerical analysis method developed by using boundary element method could be used broadly for the design of various offshore structures to be constructed in coastal zones in the future.

Application of Immersed Boundary Method for Flow Over Stationary and Oscillating Cylinders

  • Lee Dae-Sung;Ha Man-Yeong;Kim Sung-Jin;Yoon Hyun-Sik
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.6
    • /
    • pp.849-863
    • /
    • 2006
  • IBM (Immersed Boundary Method) with feedback momentum forcing was applied to stationary and moving bodies. The capability of IBM to treat the obstacle surfaces, especially with moving effect has been tested for two dimensional problems. Stationary and oscillating cylinders were simulated by using IBM based on finite volume method with Cartesian coordinates. For oscillating cylinder, lateral and vertical motions are considered, respectively. Present results such as time histories of drag and lift coefficients for both stationary and oscillating cases are in good agreement with previous numerical and experimental results. Also, the instantaneous wake patterns of oscillating cylinder with different oscillating frequency ratios well represented those of previous researches. More feasibility study for IBM has been carried out to two oscillating cylinders. Drag and lift coefficients are presented for two cylinders oscillating sinusoidally with phase difference of $180^{\circ}$.

Flow-pattern identification around two rectangular cylinders with aspect ratio of 0.5 in tandem arrangement

  • Yang, Letian;Gu, Zhifu;Zhao, Xuejun;Zhang, Weimin
    • Wind and Structures
    • /
    • v.16 no.2
    • /
    • pp.179-192
    • /
    • 2013
  • The flow around two rectangular cylinders with aspect ratio of 0.5 in a tandem arrangement, was investigated using pressure measurements (in a wind tunnel) and flow visualizations (in a water tunnel) in the range of P/h from 0.6 to 4.0. Four flow patterns were identified, and processes of shear layers wrapping around, the shear layer reattachment, vortices wrapping around and vortices impingement, were observed. Mean and rms pressure distributions, flow visualizations and Strouhal numbers were presented and discussed. The paper revealed that the variations of Strouhal numbers were associated with the shear layers or vortex interference around two cylinders.

The Synchronous Control System Design for Four Electric Cylinders (4축 전동실린더의 동기제어시스템 설계)

  • Yang, Kyong-Uk;Byun, Jung-Hwan
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.11 no.12
    • /
    • pp.1209-1218
    • /
    • 2016
  • In order to safely and speedily transport a load such as a large glass plate using four electric cylinders, the synchronous error outside the permitted range should not be continuously generated between the cylinders. In this study, a methodology of synchronous control which can be applied to synchronization of four or more cylinders is developed. The synchronous control system based on the decoupling structure is composed of a reference model, position and synchronous controllers in the respective cylinders. The reference model is used for calculating the decoupled synchronous error and control input for the each cylinder. The position controller of I-PD type is designed in order that the cylinder may follow the reference signal without overshoot and input saturation. And the synchronous controller of lead compensator is designed to achieve stable and accurate synchronization through loop shaping approach. Finally, the simulation results show that the synchronization between the four cylinders can be quickly and stably while each cylinder rod is transferred to the target point under torque disturbance.

Wind tunnel study of wake-induced aerodynamics of parallel stay-cables and power conductor cables in a yawed flow

  • Jafari, Mohammad;Sarkar, Partha P.
    • Wind and Structures
    • /
    • v.30 no.6
    • /
    • pp.617-631
    • /
    • 2020
  • Wake-induced aerodynamics of yawed circular cylinders with smooth and grooved surfaces in a tandem arrangement was studied. This pair of cylinders represent sections of stay-cables with smooth surfaces and high-voltage power conductors with grooved surfaces that are vulnerable to flow-induced structural failure. The study provides some insight for a better understanding of wake-induced loads and galloping problem of bundled cables. All experiments in this study were conducted using a pair of stationary section models of circular cylinders in a wind tunnel subjected to uniform and smooth flow. The aerodynamic force coefficients and vortex-shedding frequency of the downstream model were extracted from the surface pressure distribution. For measurement, polished aluminum tubes were used as smooth cables; and hollow tubes with a helically grooved surface were used as power conductors. The aerodynamic properties of the downstream model were captured at wind speeds of about 6-23 m/s (Reynolds number of 5×104 to 2.67×105 for smooth cable and 2×104 to 1.01×105 for grooved cable) and yaw angles ranging from 0° to 45° while the upstream model was fixed at the various spacing between the two model cylinders. The results showed that the Strouhal number of yawed cable is less than the non-yawed case at a given Reynolds number, and its value is smaller than the Strouhal number of a single cable. Additionally, compared to the single smooth cable, it was observed that there was a reduction of drag coefficient of the downstream model, but no change in a drag coefficient of the downstream grooved case in the range of Reynolds number in this study.

Behavior of Circular Concrete Cylinders Confined with Both Steel Spirals and Fiber Composites (나선형 철근 및 섬유에 의하여 동시에 구속된 원형 콘크리트 실린더의 거동)

  • Lee Jung-Yoon;Oh Young-Jun;Jeong Hoon-Sik
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.2 s.80
    • /
    • pp.175-184
    • /
    • 2004
  • When the columns of existing RC structures are repaired with FRP composites, the core concrete of the columns is confined by both materials of steel spirals (or steel hoops) and FRP composites because the FRP composites wrap the existing columns which have been already confined with steel spirals or hoops. As the stress-strain curves of steel and fiber are different to each other, the behavior of concrete columns confined with both steel spiral and FRP composites is also different to that of concrete columns confined with only steel spiral or FRP composites. Twenty four RC cylinders were tested in order to observe the behavior of RC cylinders confined with both materials. The observed results of the test showed that the behavior of the test cylinders confined with both materials was quite different to that of cylinders confined with only one material.

HEAT TRANSFER ENHANCEMENT IN CHANNEL FLOW BY A STREAMWISE-PERIODIC ARRAY OF CIRCULAR CYLINDERS (주기적으로 배열된 원형 실린더를 이용한 채널 유동의 열전달 증진)

  • Jeong, Taekyeong;Yang, Kyung-Soo;Lee, Kyongjun;Kang, Changwoo
    • Journal of computational fluids engineering
    • /
    • v.18 no.2
    • /
    • pp.85-92
    • /
    • 2013
  • In this study, we consider heat transfer enhancement in laminar channel flow by means of an infinite streamwise array of equispaced identical circular cylinders. This flow configuration can be regarded as a model representing a micro channel or an internal heat exchanger with cylindrical vortex generators. A numerical parametric study has been carried out by varying Reynolds number based on the bulk mean velocity and the cylinder diameter, and the gap between the cylinders and the channel wall. An immersed boundary method was employed to facilitate to implement the cylinders on a Cartesian grid system. No-slip condition is employed at all solid boundaries including the cylinders, and the flow is assumed to be periodic in the streamwise direction. Also, the Prandtl number is fixed as 0.7. For thermal boundary conditions on the solid surfaces, it is assumed that heat flux is constant on the channel walls, while the cylinder surfaces remain adiabatic. The presence of the circular cylinders arranged periodically in the streamwise direction causes a significant topological change of the flow, leading to heat transfer enhancement on the channel walls. The Nusselt number averaged on the channel wall is presented for the wide ranges of Reynolds number and the gap. A significant heat transfer enhancement is noticed when the gap is larger than 0.8, while the opposite is the case for smaller gaps. More quantitative results as well as qualitative physical explanations are presented to justify the effectiveness of varying the gap to enhance heat transfer from the channel walls.

Tests on the Serial Implosion of Multiple Cylinders Subjected to External Hydrostatic Pressure (외부 정수압을 받는 복수 원통의 연쇄 내파에 관한 실험연구)

  • Teguh, Muttaqie;Park, Sang-Hyun;Sohn, Jung Min;Cho, Sang-Rai;Nho, In Sik;Lee, Phill-Seung;Cho, Yoon Sik
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.57 no.4
    • /
    • pp.213-220
    • /
    • 2020
  • In the present paper, implosion responses of two adjacent cylindrical tubes under external hydrostatic pressure were experimentally investigated. The cylinder models were fabricated of aluminium alloy 6061-T6 commercial tubes. In the experiment, a pair of two-cylinders were placed inside of a support frame in a medium-size pressure chamber, whose design pressure was 6.0MPa. The distance between the two-cylinders was 30 millimeter measured from outer shell at the mid-length. The implosion tests were performed with water and compressed nitrogen gas as the pressurizing media. The ambient static pressure of the chamber and local dynamic pressure near the two-imploded models were measured simultaneously. It was found that the energy released during an implosion from the first, weaker cylinder triggered the instability of the second, stronger cylinders. In other words, the resulting shock wave of the first implosive impact from the weaker cylinder could cause the premature failure of the neighboring stronger cylinders. The non-contact implosion phenomena from the two-cylindrical tube were clearly observed.

Analysis of Scattering Characteristics of a Rectangular Waveguide with Conducting Half Cylinders using the Mode Matching Method (모드매칭법을 이용한 금속의 Half Cylinder가 있는 구형 도파관의 산란 특성 해석)

  • 김원기;천동완;김상태;신철재
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.8A
    • /
    • pp.962-971
    • /
    • 2004
  • In this paper, we present the numerical analysis method for analyzing scattering characteristics of a rectangular waveguide with the conducting half cylinder using the mode matching method and compute scattering characteristics of a waveguide according to the rotation and changing radius of the half cylinder. Also, in conjunction with the generalized scattering method, the proposed method can be easily applied to a rectangular waveguide with cascade structure of conducting half cylinders. From the simulated result of a two pole filter, resonance frequency could be controlled by the rotation of half cylinders. The simulated result shows good agreement with the HFSS's result. The proposed structure and analysis method are easily applied to the design of waveguide components with conducting half cylinders.

Aerodynamic coefficients of inclined and yawed circular cylinders with different surface configurations

  • Lin, Siyuan;Li, Mingshui;Liao, Haili
    • Wind and Structures
    • /
    • v.25 no.5
    • /
    • pp.475-492
    • /
    • 2017
  • Inclined and yawed circular cylinder is an essential element in the widespread range of structures. As one of the applications, cables on bridges were reported to have the possibility of suffering a kind of large amplitude vibration called dry galloping. In order to have a detailed understanding of the aerodynamics related to dry galloping, this study carried out a set of wind tunnel tests for the inclined and yawed circular cylinders. The aerodynamic coefficients of circular cylinders with three surface configurations, including smooth, dimpled pattern and helical fillet are tested using the force balance under a wide range of inclination and yaw angles in the wind tunnel. The Reynolds number ranges from $2{\times}10^5$ to $7{\times}10^5$ during the test. The influence of turbulence intensity on the drag and lift coefficients is corrected. The effects of inclination angle yaw angle and surface configurations on the aerodynamic coefficients are discussed. Adopting the existed the quasi-steady model, the nondimensional aerodynamic damping parameters for the cylinders with three kinds of surface configurations are evaluated. It is found that surface with helical fillet or dimpled pattern have the potential to suppress the dry galloping, while the latter one is more effective.