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Abstract : In this paper, the boundary element method is applied to solve the diffraction of waves by multiple vertical cylinders under 

the assumption of linear wave theory. A numerical analysis by boundary element method is based on Green’s theorem and introduced 

to an integral equation for the fluid velocity potential around the cylinders. The numerical results obtained in this study are compared 

with the experimental data and the results of the theory using multiple scattering techniques. The comparisons show strong agreement. 

This numerical analysis method developed by using boundary element method could be used broadly for the design of various offshore 

structures to be constructed in coastal zones in the future.
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1. Introduction

The interaction between waves and multiple vertical 

cylinders phenomenon can be reviewed briefly as follows.  

As the incident waves impinge on each cylinder, the 

reflected waves move outward. On the sheltered side of the 

cylinder there will be a “shadow” zone where the wave 

fronts are bent around the cylinder, the so-called diffracted 

wave. The reflected waves and diffracted waves, combined, 

are usually called the scattered waves. The scattered waves 

of each cylinder can affect other cylinders. This process is 

generally termed diffraction. By this process, the pressure 

around the cylinders will change and therefore the forces on 

the cylinders will be influenced.

There have been several studies dealing with the 

interaction of linear water waves with multiple cylinders. 

Twersky(1950) constructed a solution using an iterative 

procedure in which successive scatters by each of the 

cylinders were introduced at each order. This method was 

extended to the water wave case by Ohkusu(1974). The 

main drawback of the iterative procedure is that it rapidly 

becomes unmanageable as the number of cylinders 

increases. Spring and Monkmeyer(1974) proposed a solution 

for the interaction of water waves with the cylinders using 

eigenfuntion expansion approach. They formulated the 

problem in terms of a matrix equation and the solution is 

obtained by the inversion of the matrix. Chakrabarti(1978) 

extended the work of Spring and Monkmeyer(1974), and 

obtained the solution for the diffracted wave of multiple 

cylinders by carrying out the analysis in a complex domain. 

Subsequently, Linton and Evans(1990) made a major 

simplification to the theory proposed by Spring and 

Monkmeyer(1974). In addition, Sobierajski(1970) presented 

experiment data for the interaction of waves with an 

infinite row of equally spaced cylinders at different spacing.  

Notably, based on the boundary element method, wave 

force, run-up and free-surface elevation around a single 

circular vertical cylinder and various arrays of two to three 

of vertical circular cylinders were analyzed numerically by 

authors(Kim et al., 2007; Kim and Cao, 2008a; 2008b). 

In this paper, a numerical analysis method by boundary 

element method is presented to calculate wave forces acting 

on each of multiple vertical cylinders namely, four vertical 

circular cylinders in square and lozenge array. The 

numerical analysis method is developed by using Green’s 

function in direct boundary element method and introduced 

to an integral equation for the fluid velocity potential 

around the multiful cylinders. To verify, the results obtained 

from this study were compared with the experiment data 

obtained by Sobierajski(1970), the results of 

Chakrabarti(1978), and the results of Linton and 

Evans(1990). The comparisons are in good agreement. 

2. Basic equations

In this study, the interaction of waves with four vertical 
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circular cylinders in square and lozenge array is considered 

under the assumption of linear potential flow. The cylinders, 

having radius , are arranged in the water of uniform depth 

. The global Cartesian coordinate system     is 

defined with the origin located on the still-water level, the 

  axis directed vertically upwards,   and   axis directed 

horizontally as shown in Fig. 1.
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Fig. 1 Definition of multiple vertical cylinders 

It is assumed that the fluid is inviscid, incompressible, its 

motion is irrotational, and fluid motion is small. The 

cylinders subjected to a train of regular waves of height   

and angular frequency   propagating at an angle   to the 

positive   axis. The velocity potential     can be 

defined by: 

     
                        (1)

where     denotes the real part of a complex expression.

In equation (1), the total velocity potential is defined as 

follows:

                                        (2)

 





  





                    (3)

 cosh
cosh

                     (4)

where   and   are incident wave velocity potential and 

scattered velocity potential, respectively.   is wave 

amplitude,   is the acceleration due to gravity, and the 

wave number   is the positive real root of the dispersion 

relation:

   tanh                                    (5)
Boundary value problems by the formulation of scattered 

wave velocity potential   are given as follows:

Laplace equation:

   ∇                      in                    (6.a)

Free surface boundary condition:

   





               on                 (6.b)

Cylinder surface boundary condition:

   





                 on                 (6.c)

Sea bed boundary condition:

   


                      on                (6.d)

Radiation boundary condition:

   lim
→∞
 


       on                (6.e)

where   is fluid region,   is free surface, , 

      is the body surfaces of the cylinders,   is 

the sea bed,   is the vertical boundary at infinity,   is the 

normal drawn outwardly on the boundary,   is the 

imaginary unit   , and  .
The incident wave velocity potential   and scattered 

wave velocity potential   are defined as follows:

 cosh 
cosh

   
 cossin              (7)

 cosh
cosh

                          (8)

If the definitions of equations (7) and (8) are substituted 

into equations (6.a) ~ (6.e), the boundary values with   are 

obtained as follows:

∇ 
                in                    (9.a)







                on                  (9.b) 
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lim
→∞
 


       on ∞                 (9.c)

In equations (9.a)～(9.c) boundary value problems are 

two-dimension problem of   plane as shown in Fig. 2. 

Finally, because of analyzing boundary value problems by 

 , the scattered wave velocity potential is calculated. Thus, 

the total velocity potential, wave pressure, and wave force 

can be calculated by using it. 

The formulation and discretization by boundary element 

method were mentioned in detail(Kim and Cao, 2008a; 

2008b).

* j

i*

ΩΩ
0 x

y

S∞

SH1 SH2

SHm

SHN

Fig. 2 Configuration of numerical model 

3. Numerical analysis and remarks 

To confirm the validity of this numerical analysis method 

and to investigate the effect of the neighboring cylinders on 

the wave forces acting on each cylinder, three different 

arrays of multiple vertical circular cylinders namely, seven 

cylinders in one line normal to the incident waves and four 

cylinders in square and lozenge array as shown in Fig. 3, 

are considered respectively.

To verify the numerical results of this study is 

demonstrated through the comparison with the experimental 

data obtained by Sobierajski(1970) and the results obtained 

from the theory proposed by Chakrabarti(1978). In the 

author’s knowledge, Sobierajski(1970) tested  interaction of 

regular waves (for  ) with a large single cylinder in 

a finite tank width to represent an infinite row of equally 

spaced cylinders at different spacing. These experimental 
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Fig. 3 Geometries for: (a) Seven cylinders in tandem normal 

to the incident wave; (b) Four cylinders in square 

array; (c) Four cylinders in lozenge array

data are compared with the results obtained from this study 

as shown in Fig. 4. The results of this method are obtained 

for seven equally spaced cylinders () in a line normal 

to the incident waves (see Fig. 3a). Fig. 4 presents a 

non-dimensional form of the force ratio   versus the 

distance ratio  . In which,   is the ratio of the 

maximum wave force on a cylinder in the row seven 

cylinders to the corresponding maximum wave force on the 

isolate cylinder.   is the distance between the centers of 
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the cylinders.    represents that the cylinders are 

touching each other, whereas    means that the distance 

among the cylinders →∞. Also in Fig. 4, the results 

obtained by Chakrabarti(1978) are plotted for comparison. 

The comparisons show the strong agreement. 

 

Fig. 4 Force ratio   versus cylinder spacing ratio   for 

seven cylinders in tandem normal to incident wave 

for    

(a)

(b)

 

Fig. 5 Wave forces in -direction on each cylinder in 

square array for  : (a) Wave force on 

cylinder 1; (b) Wave force on cylinder 2

(a)

(b)

Fig. 6 Wave forces in -direction on each cylinder in 

square array for  : (a) Wave force on 

cylinder 1; (b) Wave force on cylinder 2

In addition, to investigate the effect of the neighboring 

cylinders on the wave forces acting on each of cylinders, 

two different geometries are considered in this study 

namely, four cylinders in square and lozenge array (see Fig. 

3b and 3c). In all figures, the wave forces are 

nondimensionalized by   and the magnitude of run-up 

are nondimensionalized by .

From Fig. 5 to Fig. 8, wave forces in - and -direction 

acting on each of four cylinders in square and lozenge 

array versus ratio    are presented. In order to 

compare with the results of Chakrabarti(1978), the wave 

forces are presented for  ,  . Due to the 

symmetry of the geometry, the wave forces on the cylinder 

1 and 2 in square array are presented. In lozenge array, the 

wave forces in - and -direction on the cylinder 2 and 4 

are the same. The wave forces in -direction on the 

cylinder 1 and 3 are zero. The wave force on the isolate 

cylinder is also plotted for the purpose of comparison. The 

computed results show that as the distance between the 

cylinders increases, the wave force on each cylinder of 

four-cylinder group oscillates around the wave force on an 
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(a)

(b)

(c)

Fig. 7 Wave forces in -direction on each cylinder in 

lozenge array for  : (a) Wave force on 

cylinder 1; (b) Wave force on cylinder 2; (c) Wave 

force on cylinder 3  

Fig. 8 Wave forces in -direction on cylinder 2 in lozenge 

array for  

(a)

(b)

(c)

(d)

Fig. 9 Wave forces in -direction on each cylinder in 

square array versus wave number   and incident 

wave angle   for  ,  : (a) Wave 

force on cylinder 1; (b) Wave force on cylinder 2; 

(c) Wave force on cylinder 3; (d) Wave force on 

cylinder 4  
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(a)

(b)

(c)

(d)

Fig. 10 Wave forces in -direction on each cylinder in 

square array versus wave number   and incident 

wave angle   for  ,  : (a) Wave 

force on cylinder 1; (b) Wave force on cylinder 2; 

(c) Wave force on cylinder 3; (d) Wave force on 

cylinder 4  

(a)

(b)

(c)

(d)

Fig. 11 Wave forces in -direction on each cylinder in 

lozenge array versus wave number   and incident 

wave angle : (a) Wave force on cylinder 1; (b) 

Wave force on cylinder 2; (c) Wave force on 

cylinder 3; (d) Wave force on cylinder 4  
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(a)

(b)

(c)

(d)

Fig. 12 Wave forces in -direction on each cylinder in 

lozenge array versus wave number   and incident 

wave angle : (a) Wave force on cylinder 1; (b) 

Wave force on cylinder 2; (c) Wave force on 

cylinder 3; (d) Wave force on cylinder 4  
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Fig. 13 Run-up on each cylinder in square array for 

 ,  ,    at various incident 

wave angles: (a) Run-up on cylinder 1; (b) 

Run-up on cylinder 2; (c) Run-up on cylinder 3; 

(d) Run-up on cylinder 4  
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Fig. 14 Run-up on each cylinder in lozenge array for 

 ,  ,    at various incident 

wave angles: (a) Run-up on cylinder 1; (b) 

Run-up on cylinder 2; (c) Run-up on cylinder 3; 

(d) Run-up on cylinder 4

isolate cylinder. The amplitude of oscillation is large as the 

ratio  . As the distance approaches infinity, the wave 

force on each cylinder tends to that of an isolate cylinder. 

The numerical results of this study show strong agreement 

with those of Chakrabarti(1978). 

Fig. 9 to Fig. 12 present the wave forces in - and 

-direction acting on four cylinders in square and lozenge 

array versus the wave number   for  ,    at 

different incident wave angles   , , , and . 

The figures show that the wave forces on the front 

cylinders extremely larger than the wave forces on the 

isolate cylinder and the rear cylinders because of the 

interaction among the cylinders and the shielding effect. 

Also the figures show that the wave forces in -direction 

tend to decrease and the wave forces in -direction tend to 

increase graduallyas the incident wave angle increases.

Fig. 13 and Fig. 14 present the run-up on each of four 

cylinders in square and lozenge array for  , 

 ,    at different incident wave angles   , 

, , and . The run-up on the isolate cylinder is 

also plotted for comparison. The results show that due to 

the interaction between the cylinders, the run-up profile on 

each cylinders is quite different from that of the isolate 

cylinder, and in most cases the maximum run-up on the 

front cylinder  is higher than that of the isolate cylinder 

because of the interaction of the cylinders. The maximum 

run-up on the front cylinder are higher than that on the 

rear cylinders because of the shielding effect. Also, the 

results of this numerical analysis method  show a strong 

agreement with those of Linton and Evans (1990). 

4. Conclusion

The wave pressures and wave forces acting on each of 

four vertical circular cylinders in square and lozenge array 

are derived by using boundary element method. 

The results obtained from this numerical analysis method 

for a row of seven cylinders normal to the incident waves  

show strong agreement with the experiment data obtained 

by Sobierajski(1970) and the results of Chakrabarti (1978).  

The wave forces acting on four cylinders in square and 

lozenge array are calculated and presented. Also, the effects 

of various parameters such as the cylinder spacing, the 

incident wave angle and the wave number on the 

hydrodynamic loads are considered and presented in this 

paper. The computed results show that as the distance 

between the cylinders increases, the wave force on each 

cylinder in the cylinder group oscillates around the wave 

force on an isolate cylinder. The amplitude of oscillation is 

large as the ratio  .
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In addition, the run-up on each of four cylinders in 

square and lozenge array are calculated. The numerical 

results of this study  show that the run-up profile on each 

cylinders is quite different from that on the isolate cylinder 

due to the interaction between the cylinders. The computed 

results also show strong agreement with the results of 

Linton and Evans(1990). 

This numerical analysis developed by boundary element 

method could be used broadly for the design of various 

offshore structures to be constructed in coastal zones in the 

future. 
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