• Title/Summary/Keyword: cylinder function

Search Result 381, Processing Time 0.032 seconds

Effect of Gas-Filled Cavity Of! Frequency Response of a Pressure Transducer (기포로 채워진 캐비티가 압력 센서의 주파수 응답 특성에 미치는 영향)

  • Kang, Kwan-Hyoung;Lee, Mu-Yeol;Kim, Young-Gi
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.785-790
    • /
    • 2000
  • The resonant frequency of a gas-filled cylindrical Helmholtz resonator in a liquid is obtained analytically. The equation of motion of the resonator is derived by using the condition of equilibrium of forces acting on the mass in the neck of the resonator. The reaction force on the upper side of the cylinder due to the acceleration of external fluid and sound radiation is obtained by using the analytical results for the baffled circular-piston problem. From the frequency response function of the resonator, a formula to predict the resonant frequency of the resonator is derived. It is shown that the resonant frequency of the Helmholtz resonator significantly decreases due to the cushioning effect of gas inside the cavity. Therefore, when a pressure transducer is to be installed in a pin-hole type mounting method, much care should be paid to remove the gas from the cavity.

  • PDF

Design and manufacture of atomatic microwave leakage inspection system (전자 오븐의 누설 고주파 자동 검사 시스템 설계와 제작)

  • 이만형;송지복;이석희;정영철;안희태
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1987.10b
    • /
    • pp.492-496
    • /
    • 1987
  • The testing philosophy and control schemes are investigated and applied to construct the Automatic Microwave Leakage Inspection System (AMLIS) . AMLIS is consists of three major parts such as Material Handling Mechanism, Fine Positioning Mechanism and Scanning Mechanism. The material Handling unit is designed to perform loading and unloading microwave oven onto the testing point by pneumatic cylinder and vacuum pump. The Fine positioning part includes X-Y-.THETA. table and distance sensing equipment. The scanning part is composed of five SCARA robots, which traverse X-Y-Z catesian coordinates respectively. The leakage testing probes are placed at the end of this each robot then the path and speed are both controlled via microprocessors. A performance test of this system combined with electric parts and software is done and the basic major function of system are accomplished.

  • PDF

Solution of the Liner Free Surface Problem by a Discrete Singularity Method (집중특이점분포법을 이용한 선형자유표면문제의 해석)

  • Gang, Chang-Gu;Yang, Seung-Il;Lee, Chang-Seop
    • 한국기계연구소 소보
    • /
    • v.4 no.1
    • /
    • pp.29-42
    • /
    • 1981
  • In this paper, it is demonstrated that, with the distribution of lowestorder concentrated (discrete) singularities of delta function nature, the solution to the linear free surface problem can be obtaianed with a remarkable degree of accuracy. The linearized bounday valve problem is formulated subject to boundary conditions for the determination of strengths of singularities; the simple sources above (not on) the free surface and the vortices on the body surface. Three sample calculations were performed; the flow about a submerged vortex of known strength, the flow past a submerged circular cylinder, and the flow around a hydrofoil section. The convergence of the numerical procedure is achieved with a relatively small number of elements, The final results are compared with those of the publi¬shed works, and are considered very satisfactory.

  • PDF

A Tracking Control of the Hydraulic Servo System Using the Neuro-Fuzzy Controller (뉴로-퍼지 제어기를 이용한 유압서보시스뎀의 추적제어)

  • 박근석;임준영;강이석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.228-228
    • /
    • 2000
  • To deal with non-linearities and time-varying characteristics of hydraulic systems, in this paper, the neuro-fuzzy controller has been introduced. This controller does not require an accurate mathematical model for the nonlinear factor. In order to solve general fuzzy inference problems, the input membership function and fuzzy reasoning rules are used for determining the controller Parameters. These parameters are determined by using the learning algorithm. The control performance of the neuro-fuzzy controller is obtained through a series of experiments for the various types of input while applying disturbances to the cylinder. .and performance of this controller was compared with that of PID, PD controller. As a experimental result, it can be proven that the position tracking performance of the neuro-fuzzy is better than that of PID and PD controller.

  • PDF

Evaluation of Friction Torque for a Turbopump Ball Bearing (터보펌프 볼 베어링의 마찰 토크 평가)

  • Jeon, Seong-Min;Kwak, Hyun-Duck;Kim, Jin-Han
    • Tribology and Lubricants
    • /
    • v.27 no.1
    • /
    • pp.25-33
    • /
    • 2011
  • Rolling contact ball bearings are utilized almost exclusively for liquid propellant rocket engine turbopump. Turbopump ball bearings are required to endure high speed and high load for a poor lubricated condition in cryogenic environment. To evaluate bearing heat generation performance, friction torque is investigated as a function of rotation speed, bearing load and cooling flow rate through an experimental study using water coolants. Radial and axial loads are simultaneously applied to the test bearing by gas pressurized cylinder rod. Endurance performance of bearing has been also verified under the bearing required load for operating condition during total accumulated test time 2,100 sec.

Development of Pneumatic Excavator System (공압 굴삭기 시스템의 구축)

  • Cheon Y.S.;Lee J.Y.;Cho C.H.;Ahn K.T.;Yang S.Y.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.33-34
    • /
    • 2006
  • The most bottleneck of development of automation excavator system is the making mathematical linear model. Because of non-linear of control circuit, cylinder, join in hydraulic circuit, and heavy loading so on. Therefore, whatever robust controller is designed, real experimentation is necessary. But, a real experimentation has many risks. The excavator is expensive and large size. Therefore a development of experimentation system is difficult and not safe. Specially, there have a difficulty, because of big noise. So, on experimentation is difficult in school. Manufacturing pneumatic excavator modeland using system identification, design a system transfer function in this paper. Also, planning m-PID Controller using CDM, and examining usefulness applied to actuality model.

  • PDF

Application of the Weak-Scatterer Hypothesis to the Wave-Body Interaction Problems

  • Kim, Yong-hwan;Sclavounos, Paul-D.
    • Journal of Ship and Ocean Technology
    • /
    • v.4 no.2
    • /
    • pp.1-12
    • /
    • 2000
  • The present study concentrates on the weak-scatterer hypothesis for the nonlinear wave-body interaction problems. In this method, the free surface boundary conditions are linearized on the incoming wave profile and the exact body motion is applied. The considered problems are the diffraction problem near a circular cylinder and the ship response in oblique waves. The numerical method of solution is a Rankine panel method. The Rankine panel method of this study adopts the higher-order B spline basis function for the approximation of physical variables. A modified Euler scheme is applied for the time stepping, which has neutral stability. The computational result shows some nonlinear behaviors of disturbance waves and wave forces. Moreover, the ship response shows very close results to experimental data.

  • PDF

Development of a Cardiovascular Simulator Focused on the Pressure Wave (혈압파형에 초점을 맞춘 심혈관계 시뮬레이터의 개발)

  • Lee, Ju-Yeon;Jang, Min;Shin, Sang-Hoon
    • Journal of Biomedical Engineering Research
    • /
    • v.34 no.1
    • /
    • pp.40-45
    • /
    • 2013
  • The conventional simulators used the expensive commercial artificial heart with a limited performance, and focused on replicating the heart function. The arterial pressure is the key factor of the cardiovascular disease. The purpose of this study is to develop a simulator focused on the pressure wave. The simulator is composed of a step motor, slider-crank mechanism, piston-cylinder, two check valves, a elastic tube, and two reservoirs. With the changes of design parameters, the functions of the simulator were evaluated. The simulator shows the good agreement of the characteristics of the cardiovascular system.

Simulation of Secondary Motion of Piston Assemblies (피스톤 어셈블리의 2차 운동에 관한 시뮬레이션)

  • 오병근;조남효
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.3 no.2
    • /
    • pp.231-243
    • /
    • 2000
  • This paper describes a simulation of secondary motion of piston assemblies using PISDYN by Ricardo. Motions of the piston, pin, rod and skirt are separately calculated, by integrating equations of motion for individual components and dynamic degrees of freedom. The effects of engine speed at full load and pin offsets on the piston assembly secondary motions, forces and friction were investigated in parametric study for 4-cylinder gasoline engine. Results show that lateral displacement and friction loss of the piston increase as a function of engine speed. The lateral motion of the piston is affected by the change in pin offset. The minimum friction loss for the condition of 4800rpm WOT occurs at a pin offset of 1.6mm.

  • PDF

Static analysis of FGM cylinders by a mesh-free method

  • Foroutan, M.;Moradi-Dastjerdi, R.;Sotoodeh-Bahreini, R.
    • Steel and Composite Structures
    • /
    • v.12 no.1
    • /
    • pp.1-11
    • /
    • 2012
  • In this paper static analysis of FGM cylinders subjected to internal and external pressure was carried out by a mesh-free method. In this analysis MLS shape functions are used for approximation of displacement field in the weak form of equilibrium equation and essential boundary conditions are imposed by transformation method. Mechanical properties of cylinders were assumed to be variable in the radial direction. Two types of cylinders were analyzed in this work. At first cylinders with infinite length were considered and results obtained for these cylinders were compared with analytical solutions and a very good agreement was seen between them. Then the proposed mesh-free method was used for analysis of cylinders with finite length and two different types of boundary conditions. Results obtained from these analyses were compared with results of finite element analyses and a very good agreement was seen between them.