• 제목/요약/키워드: cyclooxygenase-l

검색결과 299건 처리시간 0.04초

Inhibition of Inducible Nitric Oxide Synthase and Cyclooxygenase-2 Activity by $1,2,3,4,6-Penta-Ο-galloyl-{\beta}-D-glucose$ in Murine Macrophage Cells

  • Lee, Sung-Jin;Lee, Ik-Soo;Mar, Woong-Chon
    • Archives of Pharmacal Research
    • /
    • 제26권10호
    • /
    • pp.832-839
    • /
    • 2003
  • Activated macrophages express inducible isoforms of nitric oxide synthase (iNOS) and cyclooxygenase (COX-2), and produce excessive amounts of nitric oxide (NO) and prostaglandin E$_2$ (PGE$_2$), which play key roles in the processes of inflammation and carcinogenesis. The root of Paeonia lactiflora Pall., and the root cortex of Paeonia suffruticosa Andr., are important Chinese crude drugs used in many traditional prescriptions. 1,2,3,4,6-penta-O-galloyl-$\beta$-D-glucose (PGG) is a major bioactive constituent of both crude drugs. PGG has been shown to possess potent anti-oxidant, anti-mutagenic, anti-proliferative and anti-invasive effects. In this study, we examined the inhibitory effects of 1,2,3,4,6-penta-O-galloyl-$\beta$-D-glucose (PGG) isolated from the root of Paeonia lactiflora Pall. on the COX-2 and iNOS activity in LPS-activated Raw 264.7 cells, COX-1 in HEL cells. To investigate the structure-activity relationships of gallate and gallic acid for the inhibition of iNOS and COX-2 activity, we also examined (-)-epigallocatechin gallate (EGCG), gallic acid, and gallacetophenone. The results of the present study indicated that PGG, EGCG, and gallacetophenone treatment except gallic acid significantly inhibited LPS-induced NO production in LPS-activated macrophages. All of the four compounds significantly inhibited COX-2 activity in LPS-activated macrophages. Among the four compounds examined, PGG revealed the most potent in both iNOS ($IC_{50}$ = 18 $\mu\textrm{g}/mL$) and COX-2 inhibitory activity (PGE$_2$: $IC_{50}$ = 8 $\mu\textrm{g}/mL$ and PGD$_2$: $IC_{50}$ = 12 $\mu\textrm{g}/mL$), respectively. Although further studies are needed to elucidate the molecular mechanisms and structure-activity relationship by which PGG exerts its inhibitory actions, our results suggest that PGG might be a candidate for developing anti-inflammatory and cancer chemopreventive agents.

Antioxidant and Anti-inflammatory Activities of Butanol Extract of Melaleuca leucadendron L.

  • Surh, Jeong-Hee;Yun, Jung-Mi
    • Preventive Nutrition and Food Science
    • /
    • 제17권1호
    • /
    • pp.22-28
    • /
    • 2012
  • Melaleuca leucadendron L. has been used as a tranquilizing, sedating, evil-dispelling and pain-relieving agent. We examined the effects of M. leucadendron L. extracts on oxidative stress and inflammation. M. leucadendron L. was extracted with methanol (MeOH) and then fractionated with chloroform ($CHCl_3$) and butanol (BuOH). Antioxidant activity of the MeOH extract and BuOH fraction were higher than that of both ${\alpha}$-tocopherol and butyrated hydroxytoluene (BHT). Total phenol content in the extracts of M. leucadendron L., especially the BuOH fraction, well correlated with the antioxidant activity. The anti-inflammatory activity of BuOH extracts were investigated by lipopolysaccharide (LPS)-induced nitric oxide (NO) and prostaglandin $E_2$ ($PGE_2$) production, and cyclooxygenase-2 (COX-2) expression in RAW 264.7 macrophages. The BuOH fraction significantly inhibited LPS-induced NO and $PGE_2$ production. Furthermore, BuOH extract of M. leucadendron L. inhibited the expression of COX-2 and iNOS protein without an appreciable cytotoxic effect on RAW264.7 cells. The extract of M. leucadendron L. also suppressed the phosphorylation of inhibitor ${\kappa}B{\alpha}$ ($I{\kappa}B{\alpha}$) and its degradation associated with nuclear factor-${\kappa}B$ (NF-${\kappa}B$) activation. Furthermore, BuOH fraction inhibited LPS-induced NF-${\kappa}B$ transcriptional activity in a dose-dependent manner. These results suggested that M. leucadendron L. could be useful as a natural antioxidant and anti-inflammatory resource.

Neuroprotective Effect of N-nitro-L-arginine Methylester Pretreatment on the Early Stage of Kainic Acid Induced Neuronal Degeneration in the Rat Brain

  • Koh, Jun-Seok;Kim, Gook-Ki;Lim, Young-Jin;Rhee, Bong-Arm;Kim, Tae-Sung
    • Journal of Korean Neurosurgical Society
    • /
    • 제38권4호
    • /
    • pp.287-292
    • /
    • 2005
  • Objective : Kainic acid[KA] enhances the expression of nitric oxide synthase, increases nitric oxide[NO], and thus evokes epileptic convulsion, which results in neuronal damage in the rat brain. NO may stimulate cyclooxygenase type-2 [COX-2] activity, thus producing seizure and neuronal injury, but it has also been reported that KA-induced seizure and neurodegeneration are aggravated on decreasing the COX-2 level. This study was undertaken to investigate whether the suppression of NO using the NOS inhibitor, N-nitro-L-arginine methyl ester[L-NAME], suppresses or enhances the activity of COX-2. Methods : Silver impregnation and COX-2 immunohistochemical staining were used to localize related pathophysiological processes in the rat forebrain following KA-induced epileptic convulsion and L-NAME pretreatment. Post-injection survival of the rat was 1, 2, 3days and 2months, respectively. Results : After the systemic administration of KA in rats, neurodegeneration increased with time in the cornu ammonis [CA] 3, CA 1 and amygdala, as confirmed by silver impregnation. On pretreating L-NAME, KA-induced neuronal degeneration decreased. COX-2 enzyme activities increased after KA injection in the dentate gyrus, CA 3, CA 1, amygdala and pyriform cortex, as determined by COX-2 staining. L-NAME pretreatment prior to KA-injection, caused COX-2 activities to increase compared with KA- injection only group by 1day and 2days survival time point. Conclusion : These results suggest that L-NAME has a neuroprotective effect on KA-induced neuronal damage, especially during the early stage of neurodegeneration.

Antioxidant and Suppressive Effects of Ethanolic Extract Fractions from Safflower (Carthamus tinctorius L.) Flower on the Biosynthesis of Inflammatory Mediators from LPS-stimulated RAW 264.7 Cells

  • Lee, Je-Hyuk;Jeon, Choon-Sik;Kim, Gun-Hee
    • Food Science and Biotechnology
    • /
    • 제18권1호
    • /
    • pp.143-149
    • /
    • 2009
  • The aim of this study was to elucidate the anti-inflammatory activity of safflower (Carthamus tinctorius L.) ethanolic extract fractions (CFEFs). Butanol fraction had the strongest antioxidant activity, and all CFEFs, except for chloroform fraction, partly inhibited lipopolysaccharide (LPS)-induced nitrite production in RAW 264.7 cells. In the cell-free system, hexane and butanol fractions chemically quenched nitric oxide (NO). In addition, the iNOS mRNA transcription was suppressed by ethanol extract and hexane fraction in LPS-stimulated RAW 264.7 cells. Taken together, the inhibitory effect of CFEFs on NO production from LPS-stimulated RAW 264.7 cells, might be due to both the chemical NO quenching activity and the suppression of iNOS mRNA transcription partially. The synthesis of prostaglandin $E_2$ ($PGE_2$) was potently inhibited by ethanol extract to below basal label, and the transcription of cyclooxygenase-2 (COX-2), an enzyme involving in $PGE_2$ synthesis, was partially suppressed by ethanol extract and hexane fraction. Based on these results, CFEFs may be useful as an alternative medicine for the relief and retardation of immunological inflammatory responses through the reduction of inflammatory mediators, including NO and $PGE_2$ production.

Anti-Inflammatory Activity of Elsholtzia splendens

  • Kim, Dong-Wook;Son, Kun-Ho;Chang, Hyeun-Wook;Bae, Ki-Hwan;Kang, Sam-Sik;Kim, Hyun-Pyo
    • Archives of Pharmacal Research
    • /
    • 제26권3호
    • /
    • pp.232-236
    • /
    • 2003
  • Elsholtzia splendens Nakai has been used in North-East Asia as an ingredient of folk medicines for treating cough, headache and inflammation. The present investigation was carried out to establish its in vivo anti-inflammatory activity using several animal models of inflammation and pain. The 75% ethanol extract of the aerial part of E. splendens significantly inhibited mouse croton oil-induced, as well as arachidonic acid-induced, ear edema by oral administration (44.6% inhibition of croton oil-induced edema at 400 mg/kg). This plant material also showed significant inhibitory activity against the mouse ear edema induced by multiple treatment of phorbol ester for 3 days, which is an animal model of subchronic inflammation. In addition, E. splendens exhibited significant analgesic activity against mouse acetic acid-induced writhing (50% inhibition at 400 mg/kg), while indomethacin (5 mg/kg) demonstrated 95% inhibition. E. splendens ($5-100{\;}{\mu}g/mL$) significantly inhibited $PGE_2$ production by pre-induced cyclooxygenase-2 of lipopolysaccharide-treated RAW 264.7 cells, suggesting that cyclooxygenase-2 inhibition might be one of the cellular mechanisms of anti-inflammation.

Antiinflammatory Effect of Lactic Acid Bacteria: Inhibition of Cyclooxygenase-2 by Suppressing Nuclear Factor-${\kappa}B$ in Raw264.7 Macrophage Cells

  • Lee, Jeong-Min;Hwang, Kwon-Tack;Jun, Woo-Jin;Park, Chang-Soo;Lee, Myung-Yul
    • Journal of Microbiology and Biotechnology
    • /
    • 제18권10호
    • /
    • pp.1683-1688
    • /
    • 2008
  • Lactobacillus casei 3260 (L. casei 3260) was evaluated in relation to the inflammatory response mediated by lipopolysaccharide (LPS)-induced nuclear factor-${\kappa}B$ (NF-${\kappa}B$) and cyclooxygenase-2 (COX-2) expression in Raw264.7 macrophage cells. The treatment of Raw264.7 cells with L. casei 3260 significantly inhibited the secretion of tumor necrosis factor-$\alpha$ (TNF-$\alpha$) and prostaglandins $E_{2}\;(PGE_{2})$, followed by suppression of COX-2. To clarify the molecular mechanism, the inhibitory effect of L. casei 3260 on the NF-${\kappa}B$ signaling pathway was examined based on the luciferase reporter activity. Although the treatment of Raw264.7 cells with L. casei 3260 did not affect the transcriptional activity of NF-${\kappa}B$, it did inhibit NF-${\kappa}B$ activation, as determined by the cytosolic p65 release and degradation of I-${\kappa}B{\alpha}$. Therefore, these findings suggest that the suppression of COX-2 through inhibiting the NF-${\kappa}B$ activation by LPS may be associated with the antiinflammatory effects of L. casei 3260 on Raw264.7 cells.

Mechanisms Underlying Relaxations Caused by Angiotensin II and Its Analogs in Isolated Rabbit Mesenteric Artery

  • Hong, Ki-Whan;Park, Ji-Young;Kim, Chi-Dae;Lee, Won-Suk;Rhim, Byung-Yong;Yoo, Sung-Eun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제1권4호
    • /
    • pp.393-402
    • /
    • 1997
  • In the present study, we characterized the angiotensin II (AII)-induced relaxations in the phenylephrine-precontracted rabbit mesenteric arteries with endothelium. 1) AII-induced relaxation was consistently observed in the rabbit mesenteric arteries with and without endothelium, but not in the aortic segment with endothelium. 2) AII-induced endothelium-dependent relaxation was markedly inhibited by $N^w-nitro-L-arginine$ (L-NNA, $100\;{\mu}M$), methylene blue ($10\;{\mu}M$) and LY83583 ($10\;{\mu}M$), respectively. 3) Inhibition of cyclooxygenase with indomethacin ($10\;{\mu}M$) strongly decreased the vasorelaxant response to AII irrespective of the presence of endothelium. 4) 7-Ethoxyresorufin ($1\;{\mu}M$) and clotrimazole ($1\;{\mu}M$), inhibitors of cytochrome P-450-dependent arachidonic acid metabolism, greatly attenuated the vasodilator response to AII. 5) Carbacyclin, arachidonic acid and prostaglandin $F_{2{\alpha}}$ ($PGF_{2{\alpha}}$) caused concentration-dependent relaxations in the mesenteric artery with endothelium, which were inhibited by L-NNA and methylene blue. 6) AII and $PGF_{2{\alpha}}$ significantly stimulated cyclic GMP formation in the mesenteric arteries with endothelium, which was inhibited by L-NNA and methylene blue, respectively. 7) AII enhanced synthesis of $PGF_{2{\alpha}}$ and 6-keto $PGF_{1{\alpha}}$ from the arterial segments with endothelium, which was inhibitable by indomethacin, but not by L-NNA. In conclusion, the vasorelaxant responses to AII of the rabbit mesenteric artery with endothelium are subserved by arachidonic acid and its metabolites produced via activation of cyclooxygenase and cytochrome P-450 enzyme as well as by nitric oxide.

  • PDF

Inhibitory Effects of Polyphenol-Rich Fraction Extracted from Rubus coreanum M on Thoracic Aortic Contractility of Spontaneously Hypertensive Rats

  • Lim, Hyo-Jeong;Min, Seon-Young;Woo, Eun-Ran;Lim, Dong-Yoon
    • Biomolecules & Therapeutics
    • /
    • 제19권4호
    • /
    • pp.477-486
    • /
    • 2011
  • The purpose of the present study was to investigate whether polyphenol-rich fraction extracted from fruit wine of Rubus coreanum M (PCRC) can affect the contractility of the thoacic aortic strips isolated from spontaneously hypertensive rats (SHRs), and to clarify its mechanism of action. PCRC (200-800 ${\mu}g/mL$) concentration-depenedently blocked phenylephrine (10 ${\mu}M$)-induced contractile responses of the isolated aortic strips of SHRs. PCRC (400 ${\mu}g/mL$), added in to bath medium, also depressed the contractile active tension evoked by both phenylephrine (3 and 10 ${\mu}M$) and high potassium (25 and 56 mM). In the simultaneous presence of PCRC (400 ${\mu}g/mL$) and L-NAME (a selective inhibitor of NO synthase, 300 ${\mu}M$), the contractile responses evoked by phenylephrine and high $K^+$ were recovered to considerable level of the corresponding control contractility compared with those effects of PCRC-treatment alone. However, in the simultaneous presence of indomethacin (10 ${\mu}M$, a selective cyclooxygenase inhibitor) and PCRC (400 ${\mu}g/mL$), they were not affected. In the endothelium-denuded aortic strips by CHAPS-treatment, PCRC did not affect the contractile responses induced by phenylephrine or high potassium. Interestingly, PCRC (1.0, 3.0 and 10.0 mg/kg/30 min, i.v., respectively) dose-dependently suppressed norepiphrine-induced vasopressor responses in anesthetized SHRs. Collectively, we concluded that PCRC causes vasorelaxation in the thoracic aortic strips with intact endothelium of SHRs at least partly by the increased NO production through the activation of NO synthase of vascular endothelium, but not through the activation of cyclooxygenase. These results suggest that PCRC might be helpful to prevent or alleviate cardiovascular diseases, including hypertension.

Conjugated Linoleic Acid Reduction of Vascular Endothelial Growth Factor Expression in Murine Mammary Tumor Cells through Alteration of Prostaglandin E2

  • Kim, Jung-Hyun;Hubbard, Neil E.;Lim, Debora;Erickson, Kent L.
    • Preventive Nutrition and Food Science
    • /
    • 제11권1호
    • /
    • pp.1-5
    • /
    • 2006
  • Conjugated linoleic acid (CLA) is a group of positional and geometric isomers of linoleic acid that have been used to reduce the incidence, growth and metastasis of breast, colon, prostate and gastric cancer in animals. CLA could reduce tumor growth by altering angiogenesis; a process requiring associated angiogenic factors such as vascular endothelial growth factor (VEGF). In this study, we determined whether CLA could modulate the expression of VEGF in murine mammary tumor cells and adipocytes. The c9, t11-CLA isomer reduced VEGF transcripts and protein when mammary tumor cells were stimulated with PMA. That isomer also reduced VEGF expression in un stimulated mouse 3T3-L1 adipocytes. Since VEGF can be regulated by cyclooxygenase-2 (COX-2), we determined whether CLA could alter COX-2 enzyme expression and $PGE_2$ production. The c9, t11-CLA isomer reduced not only COX-2 enzyme expression but also $PGE_2$ production. Thus, c9, t11-CLA could modulate neovascularization by alteration of VEGF expression from mammary tumor cells and adipocytes by reducing COX-2 metabolites.

Tribulus terrestris Suppresses the Lipopolysaccharide-Induced Inflammatory Reaction in RAW264.7 Macrophages through Heme Oxygenase-1 Expressions

  • Kim, Jai Eun
    • 동의생리병리학회지
    • /
    • 제28권1호
    • /
    • pp.63-68
    • /
    • 2014
  • The fruit of Tribulus terrestris L. (Zygophyllaceae) is an important source of traditional Korean and Chinese medicines. In this study, NNMBS223, consisting of the ethanol extract of T. terrestris, showed potent anti-inflammatory activities in RAW264.7 macrophages. We investigated the effect of NNMBS223 in suppressing the protein expression of inducible nitric oxide synthase (iNOS), cyclooxygenase (COX)-2 and production of iNOS-derived nitric oxide (NO), COX-2-derived prostaglandin E2 (PGE2) in lipopolysaccharide (LPS)-stimulated macrophages. In addition, NNMBS223 induced expression of heme oxygenase (HO)-1 through nuclear translocation of nuclear factor E2-related factor 2 (Nrf2) in macrophages. The effects of NNMBS223 on LPS-induced production of NO and PGE2 were partially reversed by the HO activity inhibitor tin protoporphyrin (SnPP). These findings suggest that Nrf2-dependent increases in expression of HO-1 induced by NNMBS223 conferred anti-inflammatory activities in LPS stimulated RAW264.7 macrophages.