• Title/Summary/Keyword: cyclooxygenase-1

Search Result 1,073, Processing Time 0.028 seconds

Constituents of the Fruits and Leaves of Euodia daniellii

  • Yoo, Sang-Woo;Kim, Ju-Sun;Kang, Sam-Sik;Son, Kun-Ho;Chang, Hyeun-Wook;Kim, Hyun-Pyo;Bae, Ki-Hwan;Lee, Chong-Ock
    • Archives of Pharmacal Research
    • /
    • v.25 no.6
    • /
    • pp.824-830
    • /
    • 2002
  • Four flavonoid glycosides, flavaprin (7), evodioside B (8), vitexin (11), and hesperidin (12), as well as the coumarins bergapten (1), xanthotoxin (2), and isopimpinellin (3), the lignan simplexoside (10), the steroids ${\beta}-sitosterol$ (4) and daucosterol (5), the limonoids isolimonexic acid (6) and limonin (9), and uracil (13) and myo-inositol (14) have been isolated from Euodia daniellii. The structures of these compounds were established from spectral data. Among the isolates, bergapten showed cyclooxygenase-2 inhibitory activity with an $IC_{50}$ value of $6.2{\;}{\mu\textrm{g}}/ml. Flavonoids isolated from this plant exhibited no cytotoxic activity against the human tumor cell lines, A549, SKOV-3, SKMEL-2, XF498, and HCT15.

Parthenolide Suppresses the Expression of Cyclooxygenase-2 and Inducible Nitric Oxide Synthase Induced by Toll-Like Receptor 2 and 4 Agonists

  • Lee, A-Neum;Park, Se-Jeong;Yun, Sae-Mi;Lee, Mi-Young;Son, Bu-Soon;Youn, Hyung-Sun
    • Biomedical Science Letters
    • /
    • v.16 no.1
    • /
    • pp.39-45
    • /
    • 2010
  • Toll-like receptors (TLRs), which are pattern recognition receptors (PRRs), recognize pathogen-associated molecular patterns (PAMPs) and regulate the activation of innate immunity. All TLR signaling pathways culminate in the activation of NF-${\kappa}B$, leading to the induction of inflammatory gene products such as cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS). Parthenolide, a sesquiterpene lactone isolated from the herb feverfew (Tanacetum parthenium), has been used as folk remedies to treat many chronic diseases for many years. In the present report, we present biochemical evidence that parthenolide inhibits the NF-${\kappa}B$ activation induced by TLR agonists and the overexpression of downstream signaling components of TLRs, MyD88, $IKK{\beta}$, and p65. Parthenolide also inhibits TLR agonists-induced COX-2 and iNOS expression. These results suggest that parthenolide can modulate the immune responses regulated by TLR signaling pathways.

Anti-Inflammatory Activity of Constituents Isolated from Ulmus davidiana var. japonica

  • Zheng, Ming Shan;Yang, Ju-Hye;Li, Ying;Li, Xian;Chang, Hyeun-Wook;Son, Jong-Keun
    • Biomolecules & Therapeutics
    • /
    • v.18 no.3
    • /
    • pp.321-328
    • /
    • 2010
  • Twenty six compounds (1-26) were isolated from the root barks of Ulmus davidiana var. japonica. The anti-inflammatory activity of the isolated compounds were evaluated agai nst the generation of inflammatory chemical mediators in bone marrow-derived mast cells. Among them, compounds 10, 11, 13, 15 and 19 inhibited not only cyclooxygenase-2 dependent prostaglandin $D_2$ generation but also 5-lipoxygenase dependent leukotrien $C_4$ generation in a concentration-dependent manner. In addition, compounds 11, 12, 13, 15 and 19 also inhibited $\beta$-hexosaminidase release, a marker of mast cell degranulation reaction, from bone marrow-derived mast cell. These results suggest that the anti-inflammatory activity of U. davidiana might in part occur by both the inhibition of eicosanoid generations and the degranulation reaction of mast cells.

Inhibitory Effect of Sargauum fulvellum Ethanolic Extract on LPS-Induced Inflammatory Reaction in RAW 264.7 Mouse Macrophages

  • Kim, Min-Ji;Kim, Koth-Bong-Woo-Ri;Jeong, Da-Hyun;Ahn, Dong-Hyun
    • Journal of Applied Biological Chemistry
    • /
    • v.56 no.4
    • /
    • pp.249-255
    • /
    • 2013
  • Recently, algae has been considered as a potential anti-inflammatory source due to its distinctive habitat environment exposing to light and high oxygen concentration. In present study, anti-inflammatory effect of brown alga, Sargassum fullvellum ethanol extract (SFEE), was examined. SFEE inhibited not only the production of nitric oxide and pro-inflammatory cytokines (IL-6, IL-$1{\beta}$, TNF-${\alpha}$) but also the expression of inducible nitric oxide synthase and cyclooxygenase 2 in LPS-induced RAW 264.7 cells without affecting cell viability. SFEE also suppressed the expression of nuclear factor kappa B (NF-${\kappa}B$), suggesting that SFEE could affect the expression of inflammation related cytokines and proteins through the regulation of NF-${\kappa}B$. Furthermore, formation of edema of the ear was 40% lower in mice treated with the highest dose (250 mg/kg) of SFEE than in the control mice. Thus, our study showed that SFEE may be a potential therapeutic anti-inflammatory drug.

The Effects of Lipoxygenase and Cyclooxygenase Inhibitors to Meningioma Cell Proliferation in vitro (Lipoxygenase 및 Cyclooxygenase Inhibitor가 뇌수막종세포의 성장에 미치는 영향)

  • Park, Yong Seok;Koo, Tae Heon;Lee, Jung Hoon;Lee, Young Bae;Lee, Kyu Chun;Mok, Jin Ho;Kim, Han Sik
    • Journal of Korean Neurosurgical Society
    • /
    • v.29 no.1
    • /
    • pp.28-34
    • /
    • 2000
  • Object : To verify the effect of the lipoxygenase inhibitor and cycloxygenase inhibitor on meningioma cell proliferation. Method : Using two meningioma cell lines, cell proliferation was determined at 96 hrs after adding inhibitor (AA861, Nordihydroguaiaretic acid(NDGA), Indomethacin, acetyl-11-keto-beta-boswellic acid(AKBA) into medium by methyl tetrazolium salt/phenazine methosulfate(MTS/PMS) non-radioactive cell proliferation assay. We checked optical density with 490nm wavelength UV and this value was used as a proliferative index. The percent of inhibition was also calculated from this value. Conclusion : Indomethacin and NDGA showed no effect on meningioma proliferation. AA861 also showed no significant inhibitory effect, but AKBA demonstrated a significant inhibitory effect on meningioma cell proliferation.

  • PDF

[6]-Gingerol Inhibits Phorbol Ester-Induce d Expression of Cyclooxygenase-2 in Mouse Skin: p38 MAPK and p65/RelA as Possible Molecular Targets

  • Kim, Sue-Ok;Chun, Kyung-Soo;Surh, Young-Joon
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2003.05a
    • /
    • pp.95.1-95
    • /
    • 2003
  • Ginger (Zingiber officinale Roscoe, Zingiberaceae) has a wide array of pharmacologic effects. Our previous studies have demonstrated that [6]-gingerol, a major pungent ingredient of ginger, inhibits mouse skin tumor promotion and anchorage-independent growth of cultured mouse epidermal cells stimulated with epidermal growth factor. In this study, we have investigated the molecular mechanisms underlying chemopreventive effects of [6]-gingerol on mouse skin carcinogenesis. Cyclooxygenase-2 (COX-2), a key enzyme in the formation of prostaglandins, has been recognized as a molecular target of many chemopreventive as well as anti-inflammatory agents. The murine COX-2 promoter contains several transcriptional elements, particularly those involved in regulating inflammatory processes. One of the essential transcription factors responsible for COX-2 induction is NF-kappa B. Topical application of [6]-gingerol inhibited the COX-2 expression through suppression of NF-kappa B activation in phorbol ester-treated mouse skin. [6]-Gingerol, through down-regulation of p38 MAPK, abrogated the DNA binding activity of NF-kappa B by blocking phosphorylation of p65/RelA at the Ser 536 residue. These findings suggest that [6]-gingerol exerts an anti-tumor promotional activity through inhibition of the p38 MAPK-NF-kappa B siganling cascade in mouse skin.

  • PDF

Effects of LEONURI HERBA Extract on the Regional Cerebral Blood Flow and Mean Arterial Blood Pressure in Normal Rats (익모초(益母草) 추출액이 국소 뇌혈류량 및 평균혈압에 미치는 영향)

  • Bae In-Tae;Jeong Hyun-Woo
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.19 no.6
    • /
    • pp.1599-1603
    • /
    • 2005
  • The study was designed to investigate the effects of Leonuri herba extract (LHE) on the change of regional cerebral blood flow (rCBF) and mean arterial blood pressure (MABP) in normal rats, and further to determine the mechanism of action of LHE. The results in normal rats were as follows, LHE significantly increased rCBF in a dose-dependent manner, and MABP did not change in a dose-dependent manner. This results were suggested that LHE significantly increased rCBF by dilating pial arterial diameter. The LHE-induced increase in rCBF was significantly inhibited by Pretreatment with indomethacin(1 mg/kg, i.p.), an inhibitor of cyclooxygenase, and was significantly inhibited by methylene blue($10{\mu}g/kg$, i.p.), an inhibitor of guanylate cyclase. The LHE-induced MABP did not change by pretreatment with indomethacin but was significantly inhibited by methylene blue. This results were suggested that the mechanism of LHE was mediated by cyclooxygenase.

Antioxidant and Suppressive Effects of Ethanolic Extract Fractions from Safflower (Carthamus tinctorius L.) Flower on the Biosynthesis of Inflammatory Mediators from LPS-stimulated RAW 264.7 Cells

  • Lee, Je-Hyuk;Jeon, Choon-Sik;Kim, Gun-Hee
    • Food Science and Biotechnology
    • /
    • v.18 no.1
    • /
    • pp.143-149
    • /
    • 2009
  • The aim of this study was to elucidate the anti-inflammatory activity of safflower (Carthamus tinctorius L.) ethanolic extract fractions (CFEFs). Butanol fraction had the strongest antioxidant activity, and all CFEFs, except for chloroform fraction, partly inhibited lipopolysaccharide (LPS)-induced nitrite production in RAW 264.7 cells. In the cell-free system, hexane and butanol fractions chemically quenched nitric oxide (NO). In addition, the iNOS mRNA transcription was suppressed by ethanol extract and hexane fraction in LPS-stimulated RAW 264.7 cells. Taken together, the inhibitory effect of CFEFs on NO production from LPS-stimulated RAW 264.7 cells, might be due to both the chemical NO quenching activity and the suppression of iNOS mRNA transcription partially. The synthesis of prostaglandin $E_2$ ($PGE_2$) was potently inhibited by ethanol extract to below basal label, and the transcription of cyclooxygenase-2 (COX-2), an enzyme involving in $PGE_2$ synthesis, was partially suppressed by ethanol extract and hexane fraction. Based on these results, CFEFs may be useful as an alternative medicine for the relief and retardation of immunological inflammatory responses through the reduction of inflammatory mediators, including NO and $PGE_2$ production.

Action of Phospholipase $A_2$in Histamine Release from Mast Cells (비만세포에서 Histamine유리에 관여하는 Phospholipase $A_2$의 작용)

  • 이윤혜;이승준;서무현;장용운;윤정이
    • YAKHAK HOEJI
    • /
    • v.45 no.3
    • /
    • pp.287-292
    • /
    • 2001
  • To investigate whether phospholipase $A_2$pathway is involved in histamine release of rat peritoneal mast cells, we measured histamine release in the presence of various enzyme inhibitors involved in eicosanoid pathway, such as phospholipase $A_2$, cyclooxygenase and lipoxygenase. Phospholipase $A_2$inhibitors, manoalide and OPC, significantly inhibited histamine release induced by 100 $\mu$M ATP and 1$\mu$g/ml compound 48/80. Cyclooxygenase inhibitors, ibuprofen and indomethacin, significantly inhibited ATP-induced histamine release and lipoxygenase inhibitors, baicalein and caffeic acid, also significantly inhibited. To investigate the involvement of protein kinase in ATP- and compound 48/80-induced histamine release, we observed effects of protein kinase inhibitors on histamine release. Bisindolmaleimide (protein kinase C antagonist) dose-dependently inhibited both ATP and compound 48/80-induced histamine release. Tyrosine kinase inhibitors (methyl 2,5-dihydroxy cinnamate and genistein) dose-dependently inhibited ATP and compound 48/80-induced histamine release. Protein kinase C and tyrosine kinase seem to be involved in histamine release induced by ATP and compound 48/80. These results suggest that phospholipase $A_2$pathway as well as protein kinase C and tyrosine kinase are involved in histamine release of rat peritoneal mast cells by ATP and compound 48/80.

  • PDF

Isolation and Characterization of a New Alkaloid from the Seed of Prunus persica L. and Its Anti-inflammatory Activity

  • Rho, Jung-Rae;Jun, Chang-Soo;Ha, Young-Ae;Yoo, Myung-Ja;Cui, Ming-Xun;Baek, Hwa-Seung;Lim, Jin-A;Lee, Young-Haeng;Chai, Kyu-Yun
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.8
    • /
    • pp.1289-1293
    • /
    • 2007
  • Persicaside has been isolated as a new alkaloid natural compound from a methanol (EtOA)-soluble extract of Prunus persica seed. It was purified by a combination of chromatographic techniques and recrystallization. The structure of Persicaside was determined by extensive NMR experiments and mass ppectroscopic data. It inhibited nitric oxide (NO) and prostaglandin E2 (PGE2) production via suppression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2 expression in rat osteoblast sarcoma cells (ROS 17/2.8) in concentration-dependent manner whereas it spares the COX-1 enzyme activity.