• Title/Summary/Keyword: cyclodextrin effect

Search Result 114, Processing Time 0.032 seconds

Interactions of methylated $\beta$-cyclodextrin and hydrophobically modified alkali-soluble emulsion (HASE) polymers: a rheological study

  • Gupta, R.K.;Tam, K.C.;Ong, S.H.;Jenkins, R.D.
    • Korea-Australia Rheology Journal
    • /
    • v.12 no.2
    • /
    • pp.93-100
    • /
    • 2000
  • The interactions between methylated $\beta$-cyclodextrin (CD) and hydrophobically modified alkali-soluble associative polymers (HASE) were examined by a rheological technique. The effect of "capping" of hydrophobes by methylated $\beta$-cyclodextrin on the viscosity and modulus was evaluated. Model HASE polymers with $C_1$to $C_{20}$ alkyl hydrophobic groups ethoxylated with~10 moles of ethylene-oxide (EO 10) and at concentrations up to 3 wt% were examined. With the addition of methylated $\beta$-CD, the steady shear viscosity profiles shift from a Newtonian profile to one that display a shear-thinning characteristic. Significant "capping" of the hydrophobes occurs for HASE polymers with $C_{l2}$, $C_{16}$ and $C_{20}$ hydrophobes as reflected by the large reduction in the viscosity. However, the steady shear viscosity remains constant when the concentration of $\beta$-CD exceeds 1 wt%, suggesting that $\beta$-CD is not able to fully encapsulate the hydrophobes of the HASE polymer. The temperature variation plots indicate that the activation energy of the HASE-EO10-$C_{20}$ system and $\beta$-CD is dependent on the magnitude of the applied shear stress. These results further reinforce the hypothesis that $\beta$-CD is not able to completely remove all the hydrophobic associations.phobic associations.

  • PDF

Development of Cholesterol-reduced Mayonnaise with Crosslinked β-Cyclodextrin and Added Phytosterol (가교화 β-Cyclodextrin과 식물성 Sterol을 이용한 콜레스테롤 저하 마요네즈의 연구)

  • Jung, Tae-Hee;Ha, Hyun-Jee;Ahn, Joung-Jwa;Kwak, Hae-Soo
    • Food Science of Animal Resources
    • /
    • v.28 no.2
    • /
    • pp.211-217
    • /
    • 2008
  • The objective of the present study was to develop cholesterol-reduced and phytosterol-supplemented mayonnaise using crosslinked $\beta$-cyclodextrin and examine its physicochemical and sensory attributes during 10 months of storage. The composition of cholesterol-reduced phytosterol-supplemented mayonnaise was similar to the control. The amount of cholesterol removed ranged from 90.67 to 92.47%. The TBA absorbance of the samples showed that the more phytosterol the sample contained, the lower the TBA absorbance value. The viscosity of cholesterol-reduced mayonnaise with 2.0% phytosterol decreased significantly during storage (p<0.05). The color changes of mayonnaise during storage showed a decrease in the L- and b-values, and an increase in the a-value. The experimental mayonnaise maintained emulsion stability, which was significantly lower in 2.0% phytosterol-supplemented mayonnaise. With regard to sensory attributes, most characteristics were similar to the control mayonnaise, however, the addition of phytosterol had a negative effect on stickiness and bitterness. These results indicate that the cholesterol-reduced and phytosterol-supplemented mayonnaise has decreased oxidation and maintains most of its physicochemical and sensory properties during storage.

Improvement in availability and stability of to 106w by inclusion with $\beta-cyclodextrin$ and its derivatives ($\beta-cyclodextrin$ 및 유도체의 포접체 형성에 의한 LG 106W의 유용성 및 안정성 개선에 관한 연구)

  • 정성훈;이천구;조완구;강세훈
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.25 no.1
    • /
    • pp.120-136
    • /
    • 1999
  • A newly synthesized polyhydroxy aromatic compound(LG 106w) has good skin lightening effect. Inclusion complexation of LG 106w with $\beta$-cyclodextrin and its hydroxypropyl and dimethyl derivatives was studied by the solubility method, scanning electron microscopy and differential thermal analysis. A relationship between host and guest was clearly reflected in the magnitude of the stability constant(DM-$\beta$> HP-$\beta$>$\beta$ -cyclodextrin). Formulation problems, which resulted from its very low solubility in aqueous solution, were resolved by the inclusion formation. LG 106W from inclusions is much more water-soluble than pure one. The improvement of pH and temperature stability correlated with the increased solubility was also observed. Inclusion complex of LG 106w had similar activity to pure LG 106w on the inhibition of melanin synthesis in B-16 melanoma cell but showed lower irritation on cultured cell test in vitro. According to the results, cyclodextrins might be one of the reliable candidates for improving the availability of LG 106w.

  • PDF

Aqueous Solubility Enhancement of Some Flavones by Complexation with Cyclodextrins

  • Kim, Hyun-Myung;Kim, Hyun-Won;Jung, Seun-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.3
    • /
    • pp.590-594
    • /
    • 2008
  • The inclusion complexes of cyclodextrins (CDs) with flavones in aqueous solution were investigated by phase solubility measurements. The effect of b -cyclodextrin (b -CD), heptakis (2,6-di-O-methyl) b -cyclodextrin (DM-b -CD) and 2-hydroxypropyl-b -cyclodextrin (HP-b -CD) on the aqueous solubility of three flavones, namely, chrysin, apigenin and luteolin was investigated, respectively. Solubility enhancements of all flavones obtained with three CDs followed the rank order: HP-b -CD > DM-b -CD > b -CD, and besides, CDs show higher stability constant on luteolin than that on others flavones. 1H-nuclear magnetic resonance (NMR) spectroscopy and molecular modeling was used to help establish the model of interaction of the CDs with luteolin. NMR spectroscopic analysis suggested that A-C ring, and part of the B ring of luteolin display favorable interaction with the CDs, which was also confirmed by docking studies based on the molecular simulation. The observed augmentation of solubility of luteolin by three CDs was explained by the difference of electrostatic interaction of each complex, especially hydrogen bonding.

Chiral Separation of Aromatic Acids by Capillary Electrophoresis Using HP $\beta$-Cyclodextrin as the Chiral Selector

  • La, Soo-Kie;Kim, Ji-Young;Kim, Jung-Han;Kim, Kyoung-Rae
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.399.2-399.2
    • /
    • 2002
  • Capillary electrophoretic direct chiral separation method is described for the determination of the absolute configuration of chiral aromatic acids, The enantiomeric separation was achieved by capillary electrophoresis using HP $\beta$-cyclodextrin (CD) as the chiral selector. The effect of CD concentration was investigated to optimize the chiral separation and resolution. When applied to microbial culture fluid. the present method allowed positive identification of chiral aromatic acids and their chirality as well.

  • PDF

Encapsulation of Flavors by Molecular Inclusion Using $\beta$-Cyclodextrin: Comparison with Spray-drying Process Using Carbohydrate-based Wall Materials

  • Cho, Young-Hee;Park, Ji-Yong
    • Food Science and Biotechnology
    • /
    • v.18 no.1
    • /
    • pp.185-189
    • /
    • 2009
  • Microencapsulation of flavor was carried out by molecular inclusion process using $\beta$-cyclodextrin (${\beta}CD$). ${\beta}CD$-flavor complex was prepared at various flavor-to-${\beta}CD$ ratios (1:6-1:12) to determine the effect of ${\beta}CD$ concentration on the inclusion efficiency. Maximum total oil retention and minimal surface oil content were obtained at flavors to ${\beta}CD$ ratio of 1:10. The physical properties and controlled release pattern of flavors from ${\beta}CD$-flavor complex were measured and compared with spray-dried microcapsules prepared using carbohydrate wall system. ${\beta}CD$-flavor complex showed higher total oil retention and surface oil contents, smaller mean particle size, lower moisture uptake, and higher oxidation stability than spray-dried microcapsule. Oxidative stability of flavor was correlated with hygroscopicity of wall materials. The controlled release mechanism was highly affected by temperature and characteristics of wall materials.

Development of Phytosterol Ester-added Cheddar Cheese for Lowering Blood Cholesterol

  • Kwak, H.S.;Ahn, H.J.;Ahn, J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.2
    • /
    • pp.267-276
    • /
    • 2005
  • This study was carried out to investigate the effect of phytosterol ester addition on lowering blood cholesterol in cholesterol-reduced Cheddar cheese. For cholesterol removal, separated cream was treated with 10% ${\beta}$-cyclodextrin at 800 rpm, then blended with remaining skim milk and homogenized with 1,000 psi at $70^{\circ}C$. Experimental cheeses were manufactured by five different levels of phytosterol addition. After the cholesterol reduction process by ;${\beta}$-cyclodextrin, the cholesterol removal rate was in the range of 91.0 to 92.1%. Amount of short-chain free fatty acid and free amino acids increased with an increase of phytosterol ester, and those were significantly different from that of control in all ripening periods. All rheological properties also increased with an increase of phytosterol ester during ripening period. In sensory analysis, the scores of rancid, bitterness Cheddar flavor and off-flavor intensities increased significantly, while texture was decreased during ripening in phytosterol ester-added groups. Total blood cholesterol was reduced by 18% when rats were fed Cheddar cheese treated with 8% phytosterol. The present study indicated that phytosterol ester addition resulted in a profound lowering effect of blood with cholesterol-reduced Cheddar cheese.

Effect of Environmental Factors on In Vivo Folding of Bacillus macerans Cyclodextrin Glycosyltransferase in Recombinant Escherichia coli

  • Jin, Hee-Hyun;Han, Nam-Soo;Kweon, Dae-Hyuk;Park, Yong-Cheol;Seo, Jin-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.1
    • /
    • pp.92-96
    • /
    • 2001
  • Effect of environmental factors on the expression of soluble forms of Bacillus macerans cyclodextrin glycosyltransferase in recombinant Escherichia coli BL21(DE3)pLysE:pTCGT1 were investigated. The amount of soluble CGTase produced in the cell was measured by determining its enzymatic activity. The soluble fractionof the enzyme was increased by lowering the culture temperature to $30{\circ}C$ and medium pH to 5.8 compared to the enzyme production in LB medium at $37^{\circ}C$ and pH7.0. Addition of 0.2 M NaCl enhanced enzyme expression levels at the expense of cell growth. Glycine betaine that was added after 3 h of induction protected not only the cell growth from hig osmotic pressue but also hepld in vivo folding of CGTase in recombinant E. coli. Addition of 1 mM $CaCl_2$ was also effective in the expression of soluble CGTase, resulting in 15 U/ml of the enzyme activity.

  • PDF

The Roles of Tryptophan and Histidine Residues in the Catalytic Activities $\beta$-Cyclodextrin Glucanotransferase from Bacillus firmus var. alkalophilus

  • Shin, Hyun-Dong;Kim, Chan;Lee, Yong-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.1
    • /
    • pp.62-69
    • /
    • 1999
  • In order to investigate the critical amino acid residues involved in the catalytic activities of $\beta$-cyclodextrin glucanotransferase ($\beta$-CGTase) excreted by Bacillus firmus var. alkalophilus, the amino acid residues in $\beta$-CGTase were modified by various site-specific amino acid modifying reagents. The cyclizing and amylolytic activities of $\beta$-CGTase were all seriously reduced after treatment with Woodward's reagent K (WRK) modifying aspartic/glutamic acid, N-bromosuccinimde (NBS) modifying tryptophan, and diethylpyrocarbonate (DEPC) modifying histidine residues. The roles of tryptophan and histidine residues in $\beta$-CGTase were further investigated by measuring the protection effect of various substrates during chemical modification, comparing protein mobility in native and affinity polyacrylamide gel electrophoresis containing soluble starch, and comparing the $K_m$ and $V_{max}$ values of native and modified enzymes. Tryptophan residues were identified as affecting substrate-binding ability rather than influencing catalytic activities. On the other hand, histidine residues influenced catalytic ability rather than substrate-binding ability, plus histidine modification had an effect on shifting the optimum pH and pH stability.

  • PDF

Ultrasonic Relaxation for Complexation Reaction Between β-Cyclodextrin and Butanoic Acid in Aqueous Solution (사이크로덱스트린과 부탄산의 복합체 형성반응에 의한 초음파 완화)

  • Bae, Jong-Rim
    • The Journal of the Acoustical Society of Korea
    • /
    • v.31 no.2
    • /
    • pp.100-106
    • /
    • 2012
  • The aim of this work was to reveal the effect of butanoic acid in its dissociated form and undissociated form as a guest molecule on the kinetic parameters in an inclusion reaction with ${\beta}$-cyclodextrin (${\beta}$-CD). Ultrasonic absorption measurements in the frequency range from 0.2 to 45 MHz were carried out for ${\beta}$-CD solutions with butanoic acid at $25^{\circ}C$ by ultrasonic relaxation method. The rate and the equilibrium constants were obtained from the guest concentration dependence of the relaxation frequency, and the standard volume change of the complexation reaction were obtained from the maximum absorption per wavelength. A single relaxational absorption was observed, and the cause of the relaxation was attributed to a perturbation of the chemical equilibrium associated with a complexation reaction between ${\beta}$-CD and butanoic acid. These results were compared with those in solutions containing both ${\beta}$-CD and different guest molecules. It was found that the hydrophobicity of guest molecules played an important role in the formation of the inclusion complex and also that the charge on the carboxylic group had a considerable effect on the kinetic characteristics of the complexation reaction.