• Title/Summary/Keyword: cycling stability

Search Result 176, Processing Time 0.025 seconds

Fabrication of Boron-Doped Activated Carbon for Zinc-Ion Hybrid Supercapacitors (아연-이온 하이브리드 슈퍼커패시터를 위한 보론 도핑된 활성탄의 제조)

  • Lee, Young-Geun;Jang, Haenam;An, Geon-Hyoung
    • Korean Journal of Materials Research
    • /
    • v.30 no.9
    • /
    • pp.458-464
    • /
    • 2020
  • Zinc-ion hybrid supercapacitors (ZICs) have recently been spotlighted as energy storage devices due to their high energy and high power densities. However, despite these merits, ZICs face many challenges related to their cathode materials, activated carbon (AC). AC as a cathode material has restrictive electrical conductivity, which leads to low capacity and lifetime at high current densities. To overcome this demerit, a novel boron (B) doped AC is suggested herein with improved electrical conductivity thanks to B-doping effect. Especially, in order to optimize B-doped AC, amounts of precursors are regulated. The optimized B-doped AC electrode shows a good charge-transfer process and superior electrochemical performance, including high specific capacity of 157.4 mAh g-1 at current density of 0.5 A g-1, high-rate performance with 66.6 mAh g-1 at a current density of 10 A g-1, and remarkable, ultrafast cycling stability (90.7 % after 10,000 cycles at a current density of 5 A g-1). The superior energy storage performance is attributed to the B-doping effect, which leads to an excellent charge-transfer process of the AC cathode. Thus, our strategy can provide a rational design for ultrafast cycling stability of next-generation supercapacitors in the near future.

Gel Polymer Electrolytes Derived from a Polysilsesquioxane Crosslinker for Lithium-Sulfur Batteries (리튬-황 전지용 폴리실세스키옥산 고분자 가교제로 제조된 겔 고분자 전해질의 전기화학적 특성)

  • Kim, Eunji;Lee, Albert S.;Lee, Jin Hong
    • Applied Chemistry for Engineering
    • /
    • v.32 no.4
    • /
    • pp.467-471
    • /
    • 2021
  • A ladder-like polysilsesquioxane (LPMA64) functionalized with a crosslinkable group was synthesized and used for the preparation of organic-inorganic hybrid gel polymer electrolytes through a thermal crosslinking process of the liquid electrolytes. A small weight percent of LPMA64 polymer crosslinker (5 wt%) was able to form a well-developed network structure, resulting in good dimensional stability with high ionic conductivity. The lithium-sulfur batteries fabricated with organic-inorganic hybrid gel polymer electrolytes exhibited stable C-rate and cycling performance with excellent Coulombic efficiency due to the alleviated lithium polysulfide shuttling effect during prolonged cycling. The result demonstrates that the organic-inorganic hybrid gel polymer electrolytes could be a promising candidate electrolyte for application in lithium-sulfur batteries.

Synthesis of Manganese Oxide Coated Graphite Sheet for Zinc-Ion Batteries with Improved Energy Storage Performance (아연-이온 배터리의 에너지 저장 성능 향상을 위한 망간산화물이 코팅된 흑연시트의 제조)

  • Lee, Young-Geun;An, Geon-Hyoung
    • Korean Journal of Materials Research
    • /
    • v.31 no.2
    • /
    • pp.68-74
    • /
    • 2021
  • Zinc-ion Batteris (ZIBs) are recently being considered as energy storage devices due to their high specific capacity and high safety, and the abundance of zinc sources. Especially, ZIBs can overcome the drawbacks of conventional lithium ion batteris (LIBs), such as cost and safety issues. However, in spite of their advantages, the cathode materials under development are required to improve performance of ZIBs, because the capacity and cycling stability of ZIBs are mainly influenced by the cathode materials. To design optimized cathode materials for high performance ZIBs, a novel manganese oxide (MnO2) coated graphite sheet is suggested herein with improved zinc-ion diffusion capability thanks to the uniformly decorated MnO2 on the graphite sheet surface. Especially, to optimize MnO2 on the graphite sheet surface, amounts of percursors are regulated. The optimized MnO2 coated graphite sheet shows a superior zinc-ion diffusion ability and good electrochemical performance, including high specific capacity of 330.8 mAh g-1 at current density of 0.1 A g-1, high-rate performance with 109.4 mAh g-1 at a current density of 2.0 A g-1, and remarkable cycling stability (82.2 % after 200 cycles at a current density of 1.0 A g-1). The excellent electrochemical performance is due to the uniformly decorated MnO2 on the graphite sheet surface, which leads to excellent zinc-ion diffusion ability. Thus, our study can provide a promising strategy for high performance next-generation ZIBs in the near future.

Biomass-Derived Three-Dimensionally Connected Hierarchical Porous Carbon Framework for Long-Life Lithium-Sulfur Batteries

  • Liu, Ying;Lee, Dong Jun;Lee, Younki;Raghavan, Prasanth;Yang, Rong;Ramawati, Fitria;Ahn, Jou-Hyeon
    • Clean Technology
    • /
    • v.28 no.2
    • /
    • pp.97-102
    • /
    • 2022
  • Lithium sulfur (Li-S) batteries have attracted considerable attention as a promising candidate for next-generation power sources due to their high theoretical energy density, low cost, and eco-friendliness. However, the poor electrical conductivity of sulfur and its insoluble discharging products (Li2S2/Li2S), large volume changes, severe self-discharge, and dissolution of lithium polysulfide intermediates result in rapid capacity fading, low Coulombic efficiency, and safety risks, hindering Li-S battery commercial development. In this study, a three-dimensionally (3D) connected hierarchical porous carbon framework (HPCF) derived from waste sunflower seed shells was synthesized as a sulfur host for Li-S batteries via a chemical activation method. The natural 3D connected structure of the HPCF, originating from the raw material, can effectively enhance the conductivity and accessibility of the electrolyte, accelerating the Li+/electron transfer. Additionally, the generated micropores of the HPCF, originated from the chemical activation process, can prevent polysulfide dissolution due to the limited space, thereby improving the electrochemical performance and cycling stability. The HPCF/S cell shows a superior capacity retention of 540 mA h g-1 after 70 cycles at 0.1 C, and an excellent cycling stability at 2 C for 700 cycles. This study provides a potential biomass-derived material for low-cost long-life Li-S batteries.

Relative Temporal Stability in English Speech Rhythm by Korean learners with low and high English Proficiency. (한국인 학습자의 능숙도에 따른 영어 리듬의 시간적 안정성 구현)

  • Kim, Hee-Sung;Jang, Young-Soo;Shin, Ji-Young;Kim, Kee-Ho
    • Proceedings of the KSPS conference
    • /
    • 2007.05a
    • /
    • pp.213-216
    • /
    • 2007
  • The purpose of this study is to observe how Korean learners with low (KL) and high (KH) English proficiency manifest English rhythm with respect to the relative temporal stability or temporal constraint of syllable. In this study, speech cycling task, repeating a short phrase with the series of beeps of same interval, was used to examine temporal distribution of stressed beats.

  • PDF

Electrochemical Properties of Coal Tar Pitch based MCMB

  • Suh, Jeong-Kwon;Hong, Ji-Sook;Lee, Jung-Min
    • Carbon letters
    • /
    • v.5 no.3
    • /
    • pp.118-126
    • /
    • 2004
  • MCMB (Mesocarbon microbeads) is a kind of anode material for lithium-ion secondary battery. MCMB charge/discharge cycle stability is one of the important criterion at lithium-ion battery operation. In this study, the cycling stability of a lithium-ion secondary battery has been examined. MCMB was made by the direct solvent extraction method. After the MCMB was carbonized and graphitized, the measurement of charge/discharge capacity and efficiency were carried out. In the result, discharge capacity of MCMB in the initial cycle was above 290.0 mAh/g. After the second cycle, efficiency of charge/discharge MCMB was about 98%. These results were similar to the commercial MCMB product.

  • PDF

CLSM [Confocal Laser Scanning Microscope] Observation of the Surface Roughness of Pressurized Rock Samples During Freeze/Thaw Cycling

  • Kim, Hye-jin;Choi, Junghae;Chae, Byung-gon;Kim, Gyo-won
    • The Journal of Engineering Geology
    • /
    • v.25 no.2
    • /
    • pp.165-178
    • /
    • 2015
  • Physical and chemical weathering degrades rock, affecting its structural properties and thus the stability of stone buildings or other structures. Confocal laser scan microscopy (CLSM) is used here to observe temporal changes in the surface roughness of rock samples under simulated accelerated weathering. Samples were pressurized to 50, 55, or 70 MPa using a pressure frame, and subjected to freeze/thaw cycling controlled by a thermostat. The temperature was cycled from -20℃ to 40℃ and back. After each 20 cycles, CLSM was used to assess the change in surface roughness, and roughness factors were calculated to quantify the progression of the surface condition over time. Variations in cross-section line-roughness parameters and surface-roughness parameters were analyzed for specific parts of the sample surfaces at 5× and 50× magnification. The result reveals that the highest and lowest values of the roughness factors are changed according to elapsed time. Freezing/thawing at high pressure caused larger changes in the roughness factor than at low pressure.

The study on Fabrication and Characterization of $LiMn_{2-x}Cu_{x}O_{4}$for cathode material of Lithium-ion Battery (리튬이온 이차전지 양극활물질 $LiMn_{2-x}Cu_{x}O_{4}$의 제작과 전극특성에 관한 연구)

  • 박종광;고건문;홍세은;윤기웅;안용호;한병성
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.713-716
    • /
    • 2001
  • In many papers, the electrochemical analysis of LiMn$_2$O$_4$shows the transition results of Mn$^{3+}$ ion. Charge ordering is accompanied by simultaneous orbital ordering due to the Jahn-Teller effect in Mnl$^{3+}$ ions. To analyze the cycle performance of LiMn$_{2-x}$Cu$_{x}$ O$_4$as the cathode of 4 V class lithium secondary batteries, XRD, TGA analysis were conducted. Although the cycle performance of the LiMn$_{2-x}$Cu$_{x}$ O$_4$was improved from pure LiMn$_2$O$_4$, the discharge capacity was significantly lower than LiCoO$_2$. In this paper, We study the Electrochemical characterization and enhanced stability of Cu-doped spinels in the LiMn$_{2-x}$Cu$_{x}$ O$_4$upon initial cycling.l cycling.

  • PDF

Fabrication of Porous Electrodes for Zinc-Ion Supercapacitors with Improved Energy Storage Performance (아연-이온 전기화학 커패시터의 에너지 저장 성능향상을 위한 다공성 전극 제조)

  • An, Geon-Hyoung
    • Korean Journal of Materials Research
    • /
    • v.29 no.8
    • /
    • pp.505-510
    • /
    • 2019
  • Zn-ion supercapacitors (ZICs) show high energy densities with long cycling life for use in electronic devices. Porous Zn electrodes as anodes for ZICs are fabricated by chemical etching process using optimized conditions. The structures, morphologies, chemical bonding states, porous structure, and electrochemical behavior are examined. The optimized porous Zn electrode shows a root mean square of roughness of 173 nm and high surface area of $153{\mu}m^2$. As a result, ZIC using the optimized porous Zn electrode presents excellent electrochemical performance with high specific capacitance of $399F\;g^{-1}$ at current density of $0.5A\;g^{-1}$, high-rate performance ($79F\;g^{-1}$ at a current density of $10.0A\;g^{-1}$), and outstanding cycling stability (99 % after 1,500 cycles). The development of energy storage performance using synergistic effects of high roughness and high surface area is due to increased electroactive sites by surface functionalization of Zn electrode. Thus, our strategy will lead to a rational design and contribute to next-generation supercapacitors in the near future.

Enhancing the Two Way Shape Memory Functionality of Ni-Ti Sheet through the Deposition of Ti Layer (Ti 적층을 이용한 Ni-Ti 계 판재의 양방향 형상기억 기능성 개선 연구)

  • H. N. Kwon;Y. H. Park;D. Abolhasani;Y. H. Moon
    • Transactions of Materials Processing
    • /
    • v.33 no.5
    • /
    • pp.330-340
    • /
    • 2024
  • The martensitic Ni-Ti shape memory alloys(SMA) can achieve a two-way shape memory effect (TWSME) through thermomechanical training/cycling. In this study, the surface of Ni-Ti SMA sheets was treated by depositing a certain number of titanium (Ti) powder layers using a selective laser meling (SLM) process to enhance TWSME. The results showed that a unique TWSME of approximately 12% with good stability was achieved after 100 training cycles when the optimum number of five Ti layers was deposited. A larger HAZ and lower cooling rate pushed more Ti particles into the grains rather than the grain boundaries, providing more time for Ti to react with NiTi to form Ti-rich intergranular Ti2Ni(Ox) precipitates. This resulted in further hindering of dislocation movement within the grains and the generation of internal stress fields required for attaining a larger TWSME. With an increase in the number of Ti-deposited layers, there was no noticeable reduction in the one-way shape memory effect (OWSME) through the initial cycling. This was due to the high residual tensile stress caused by the lower thermal expansion of the Ti layer compared to the Ni-Ti sheet.