Acknowledgement
This work was supported by the 2019 Gyeongsang National University Global Research Network Fund.
References
- Tao, X., Wang, J., Liu, C., Wang, H., Yao, H., Zheng, G., Swh, Z. W., Cai, Q., Li, W., Zhou, G., Zu, C., and Cui, Y., "Balancing surface adsorption and diffusion of lithiumpolysulfides on nonconductive oxides for lithium-sulfur battery design," Nat. Commun., 7, 11203 (2016). https://doi.org/10.1038/ncomms11203
- Armand, M., and Tarascon, J. M., "Building better batteries," Nature, 451, 652-657 (2008). https://doi.org/10.1038/451652a
- Carter, R., Oakes, L., Muralidharan, N., Cohn, A. P., Douglas, A., and Pint, C. L., "Polysulfide anchoring mechanism revealed by atomic layer deposition of V2O5 and sulfur-filled carbon nanotubes for lithium-sulfur batteries," ACS Appl. Mater. Interfaces, 9, 7185-7192 (2017). https://doi.org/10.1021/acsami.6b16155
- Jayaprakash, N., Shen, J., Moganty, S. S., Corona, A., and Archer, L. A., "Porous hollow carbon @sulfur composites for high-power lithium-sulfur batteries," Angew. Chem. Int. Ed., 50, 5904-5908 (2011). https://doi.org/10.1002/anie.201100637
- She, Z.W., Li, W., Cha, J.J., Zheng, G., Yang, Y., Mcdowell, M. T., Hsu, P. C., and Cui, Y., "Sulphur-TiO2 yolk-shell nanoarchitecture with internal void space for long-cycle lithium-sulphur batteries," Nat. Commun., 4, 1331-1336 (2013). https://doi.org/10.1038/ncomms2327
- He, Y., Chang, Z., Wu, S., and Zhou, H., "Effective strategies for long-cycle life lithium-sulfur batteries," J. Mater. Chem. A, 6, 6155-6182 (2018). https://doi.org/10.1039/C8TA01115J
- Liu, Y., Zhao, X., Chauhan, G. S., and Ahn, J. H., "Nanostructured nitrogen-doped mesoporous carbon derived from polyacrylonitrile for advanced lithium sulfur batteries," Appl. Surf. Sci., 380, 151-158 (2016). https://doi.org/10.1016/j.apsusc.2016.01.261
- Yang, D., Zhou, H., Liu, H., and Han, B., "Hollow N-doped carbon polyhedrons with hierarchically porous shell for confinement of polysulfides in lithium-sulfur batteries," iScience, 13, 243-253 (2019). https://doi.org/10.1016/j.isci.2019.02.019
- Gao, X., Huang, Y., Gao, H., Batool, S., Lu, M., Li, X., and Zhang, Y., "Sulfur double encapsulated in a porous hollow carbon aerogel with interconnected micropores for advanced lithium-sulfur batteries," J. Alloy. Compd., 834, 155190 (2020). https://doi.org/10.1016/j.jallcom.2020.155190
- Li, X., Cheng, X., Gao, M., Ren, D., Liu, Y., Guo, Z., Shang, C., Sun, L., and Pan, H., "Amylose-derived macrohollow core and microporous shell carbon spheres as sulfur host for superior lithium-sulfur battery cathodes," ACS Appl. Mater. Inter., 9, 10717-10729 (2017). https://doi.org/10.1021/acsami.7b00672
- Yang, R., Liu, S., Liu, Y., Liu, L., Chen, L., Yu, W., Yan, Y., Feng, Z., and Xu, Y., "Decalcified fish scale-based sponge-like nitrogen-doped porous carbon for lithium-sulfur batteries," Ionics, 27, 165-174 (2021). https://doi.org/10.1007/s11581-020-03798-w
- Lee, S.Y., Choi, Y., Kim, J. K., Lee, S. J., Bae, J. S., and Jeong, E. D., "Biomass-garlic-peel-derived porous carbon framework as a sulfur host for lithium-sulfur batteries," J. Ind. Eng. Chem., 94, 272-281 (2021). https://doi.org/10.1016/j.jiec.2020.10.046
- Xue, M., Lu, W., Chen, C., Tan, Y., Li, B., and Zhang, C., "Optimized synthesis of banana peel derived porous carbon and its application in lithium sulfur batteries," Mater. Res. Bull., 112, 269-280 (2019). https://doi.org/10.1016/j.materresbull.2018.12.035
- Shaukat, R. A., Saqib, Q. M., Khan, M. U., Chougale, M. Y., and Bae, J., "Bio-waste sunflower husks powder based recycled triboelectric nanogenerator for energy harvesting," Energy Rep., 7, 724-731 (2021). https://doi.org/10.1016/j.egyr.2021.01.036
- Cubitto, M. A., and Gentili, A. R., "Bioremediation of crude oil-contaminated soil by immobilized bacteria on an agroindustrial waste-sunflower seed husks," Bioremediat. J., 19, 277-286 (2015). https://doi.org/10.1080/10889868.2014.995376
- Liu, Y., Li, X., Sun, Y., Yang, R., Lee, Y., and Ahn, J. H., "Macro-microporous carbon with a three-dimensional channel skeleton derived from waste sunflower seed shells for sustainable room-temperature sodium sulfur batteries," J. Alloy. Compd., 853, 157316 (2021). https://doi.org/10.1016/j.jallcom.2020.157316
- Liu, Y., Li, X., Sun, Y., Yang, R., Lee, Y., and Ahn, J. H., "Dual-porosity carbon derived from waste bamboo char for room-temperature sodium-sulfur batteries using carbonate-based electrolyte," Ionics, 27, 199-206 (2021). https://doi.org/10.1007/s11581-020-03801-4
- Zhou, J., Guo, Y., Liang, C., Yang, J., Wang, J., and Nuli, Y., "Confining small sulfur molecules in peanut shell-derived microporous graphitic carbon for advanced lithium sulfur battery," Electrochim. Acta, 273, 127-135 (2018). https://doi.org/10.1016/j.electacta.2018.04.021
- Li, Z., Yuan, L., Yi, Z., Sun, Y., Liu, Y., Jiang, Y., Shen, Y., Xin, Y., Zhang, Z., and Huang, Y., "Insight into the electrode mechanism in lithium-sulfur batteries with ordered microporous carbon confined sulfur as the cathode," Adv. Energy Mater., 4, 1301473 (2014). https://doi.org/10.1002/aenm.201301473
- Liu, Y., Li, X., Sun, Y., Heo, J., Lee, Y., Lim, D. H., Ahn, H. J., Cho, K. K., Yang, R., and Ahn, J. H., "Porous graphitic carbon derived from biomass for advanced lithium sulfur batteries," Sci. Adv. Mater., 12, 1627-1633 (2020).