• Title/Summary/Keyword: cyclic torsional shear test

Search Result 15, Processing Time 0.024 seconds

Cyclic Threshold Shearing Strains of Sands Based on Pore Water Pressure Buildup and Variations of Deformation Characteristics (간극수압증가와 동적변형특성 변화에 근거한 사질토 지반의 반복한계전단변형률)

  • Kim, Dong-Soo;Choo, Yun-Wook
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.274-281
    • /
    • 2004
  • In this paper, the existing Stokoe type torsional shear equipment is modified to saturate the specimen and measure excess pore water pressure during undrained testing. Two types of sands, Geumgang and Toyoura sands, were collected and TS tests were performed at various densities drainage conditions, and confining pressures. The cyclic threshold shearing strains were estimated based on the variations of shear modulus, material damping ratio and pore pressures with loading cycles. The effects of relative density, confining pressure, and drainage condition on the cyclic threshold shearing strains were investigated.

  • PDF

Effect of spiral reinforcement on flexural-shear-torsional seismic behavior of reinforced concrete circular bridge columns

  • Belarbi, Abdeldjelil;Prakash, Suriya;You, Young-Min
    • Structural Engineering and Mechanics
    • /
    • v.33 no.2
    • /
    • pp.137-158
    • /
    • 2009
  • This paper investigates the behavior of reinforced concrete (RC) circular columns under combined loading including torsion. The main variables considered in this study are the ratio of torsional moment to bending moment (T/M) and the level of detailing for moderate and high seismicity (low and high transverse reinforcement/spiral ratio). This paper presents the results of tests on seven columns subjected to cyclic bending and shear, cyclic torsion, and various levels of combined cyclic bending, shear, and torsion. Columns under combined loading were tested at T/M ratios of 0.2 and 0.4. These columns were reinforced with two spiral reinforcement ratios of 0.73% and 1.32%. Similarly, the columns subjected to pure torsion were tested with two spiral reinforcement ratios of 0.73% and 1.32%. This study examined the significance of proper detailing, and spiral reinforcement ratio and its effect on the torsional resistance under combined loading. The test results demonstrate that both the flexural and torsional capacities are decreased due to the effect of combined loading. Furthermore, they show a significant change in the failure mode and deformation characteristics depending on the spiral reinforcement ratio. The increase in spiral reinforcement ratio also led to significant improvement in strength and ductility.

Experimental Study on the Effect of Particle Size Distribution of Soil to the Liquefaction Resistance Strength (입도분포가 액상화 저항강도에 미치는 영향에 관한 실험적 연구)

  • Choi, Mun-Gyu;Seo, Kyung-Bum;Park, Seong-Yong;Kim, Soo-Il
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.1126-1133
    • /
    • 2005
  • The effects of mean particle size and uniformity coefficient of dredged soils to the liquefaction resistance strength and dynamic characteristics are experimentally studied in this paper. Representative 4 mean particle sizes and 3 uniformity coefficients were selected and 12 representative particle size distribution curves which have different mean particle sizes and uniformity coefficients, were artificially manufactured using the real dredged river soil. Cyclic triaxial tests and torsional shear tests were carried out to analyze the effect of mean particle size and uniformity coefficient to the liquefaction resistance strength and dynamic characteristics of soils.

  • PDF

Deformational Characteristics of Dry Sand Using Resonant Column / Torsional Shear Testing Equipment (공진주/비틂 전단(RC/TS)시험기를 이용한 건조 사질토의 변형특성)

  • 김동수
    • Geotechnical Engineering
    • /
    • v.11 no.1
    • /
    • pp.101-112
    • /
    • 1995
  • Deformational characteristics of soils, often expressed in terms of shear modulus and material damping ratios, are important parameters in the design of soil-structure systems subjected to cyclic and dynamic loadings. In this paper, deformational characteristics of dry sand at small to intermediate strains were investigated using resonant column/torsional shear(RC 175) apparatus. Both resonant column(dynamic) and torsional shear (cyclic) tests were performed in a sequential series on the same specimen. With the modification of motion monitoring system, the elastic zone, where the stress strain relationship is independent of loading cycles and strain amplitude, was veri tied and hysteretic damping was found even in this zone. At strains above cyclic threshold, shear modulus increases and damping ratio decreases with increasing number of loading cycles. Moduli and damping ratios of dry sand are independent of loading frequency and values obtained from pseudostatic torsional shear tests are Identical with the values from the dynamic resonant column test, provided the effect of number of loading cycles is considered in the conlparison. Therefore, deformational characteristics determined by RC/TS tests may be applied in both dynamic and static analyses of soil-structure systems.

  • PDF

Fractional model and deformation of fiber-reinforced soil under traffic loads

  • Jiashun Liu;Kaixin Zhu;Yanyan Cai;Shuai Pang;Yantao Sheng
    • Geomechanics and Engineering
    • /
    • v.39 no.2
    • /
    • pp.143-155
    • /
    • 2024
  • Traffic-induced cyclic loading leads to the rotation of principal stresses within pavement foundations, challenging accurate simulation with conventional triaxial testing equipment. To investigate the deformation characteristics of fiber-reinforced soil under traffic loads and to develop a fractional-order model to describe these deformations. A series of hollow cylinder torsional shear tests were conducted using the GDS-SSHCA apparatus. The effects of fiber content, load frequency, cyclic deviatoric stress amplitude, and cyclic shear stress amplitude on soil deformation were analyzed. The results revealed that fiber content up to 3% enhances soil resistance to deformation, while higher fiber content reduces it. Axial cumulative plastic deformation decreases with higher load frequencies and increases with higher cyclic stresses. The study also found that principal stress rotation exacerbates soil deformation. A fractional integral model based on the Riemann-Liouville operator was developed to describe the axial cumulative plastic strain, with its validity confirmed by supplementary tests. This model provides a scientific basis for understanding foundation deformation under traffic loading and contributes to the development of dynamic constitutive soil models.

A Modified Parallel Iwan Model for Cyclic Hardening Behavior of Sand(II) : Verification (수정 IWAN 모델을 이용한 사질토의 반복경화거동에 대한 연구(II) : 모델 검증)

  • 이진선;김동수;추연욱;윤종구
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.5
    • /
    • pp.57-66
    • /
    • 2003
  • In order to verify the applicability of the developed modified parallel IWAN model. two types of cyclic torsional shear tests were performed using Kum-Kang and Toyoura sands. One was a symmetric-limit loading test and the other was an irregular loading test. Model parameters were derived from the symmetric limit loading tests at various relative densities and confining pressures. The modified parallel IWAN model can predict the cyclic hardening behavior of sands very well as increasing loading cycles in the symmetric-limit tests. Irregular loading tests were performed using the loading shape suggested by Pyke(1979). Cyclic behaviors under irregular loading were simulated using model parameters derived from symmetric limit loading test results of similar loading conditions. The predicted cyclic hardening behaviors under irregular loading matched well with experimental results and the applicability of the proposed model was verified.

Study of Dynamic Characteristics of West Coast Saemangeum Sand by Torsional Shear Test (비틂전단시험에 의한 서해안 새만금 모래의 동적특성 연구)

  • Jeon, Hong-Woo;Son, Su-Won;Kim, Jin Man
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.6
    • /
    • pp.73-80
    • /
    • 2013
  • The dynamic characteristics of west coast sand were investigated in order to evaluate the design properties of the offshore wind turbine foundations to be constructed in the West Sea. Torsional shear tests were performed at different confining pressures and densities on specimens constituted by the dry fluviation method. The strain-dependent shear modulus and damping curves were obtained, together with modulus degradation curves. The results show that the confining pressure is more influential on the dynamic characteristics of the sand than the density. It was also found that the dynamic curves from this study were similar to those proposed by others. The modulus degradation ratio $G/G_{1st}$ varies slightly at a small strain level, but increases significantly once beyond the intermediate strain level.

Hysteresis modelling of reinforced concrete columns under pure cyclic torsional loading

  • Mondal, Tarutal Ghosh;Kothamuthyala, Sriharsha R.;Prakash, S. Suriya
    • Structural Engineering and Mechanics
    • /
    • v.64 no.1
    • /
    • pp.11-21
    • /
    • 2017
  • It has been observed in the past that, the reinforced concrete (RC) bridge columns are very often subjected to torsional moment in addition to flexure and shear during seismic vibration. Ignoring torsion in the design can trigger unexpected shear failure of the columns (Farhey et al. 1993). Performance based seismic design is a popular design philosophy which calls for accurate prediction of the hysteresis behavior of structural elements to ensure safe and economical design under earthquake loading. However, very few investigations in the past focused on the development of analytical models to accurately predict the response of RC members under cyclic torsion. Previously developed hysteresis models are not readily applicable for torsional loading owing to significant pinching and stiffness degradation associated with torsion (Wang et al. 2014). The present study proposes an improved polygonal hysteresis model which can accurately predict the hysteretic behavior of RC circular and square columns under torsion. The primary curve is obtained from mechanics based softened truss model for torsion. The proposed model is validated with test data of two circular and two square columns. A good correlation is observed between the predicted and measured torque-twist behavior and dissipated energy.

An elastoplastic bounding surface model for the cyclic undrained behaviour of saturated soft clays

  • Cheng, Xinglei;Wang, Jianhua
    • Geomechanics and Engineering
    • /
    • v.11 no.3
    • /
    • pp.325-343
    • /
    • 2016
  • A total stress-based bounding surface model is developed to predict the undrained behaviour of saturated soft clays under cyclic loads based on the anisotropic hardening modulus field and bounding-surface theories. A new hardening rule is developed based on a new interpolation function of the hardening modulus that has simple mathematic expression and fewer model parameters. The evolution of hardening modulus field is described in the deviatoric stress space. It is assumed that the stress reverse points are the mapping centre points and the mapping centre moves with the variation of loading and unloading paths to describe the cyclic stress-strain hysteresis curve. In addition, by introducing a model parameter that reflects the accumulation rate and level of shear strain to the interpolation function, the cyclic shakedown and failure behaviour of soil elements with different combinations of initial and cyclic stresses can be captured. The methods to determine the model parameters using cyclic triaxial compression tests are also studied. Finally, the cyclic triaxial extension and torsional shear tests are performed. By comparing the predictions with the test results, the model can be used to describe undrained cyclic stress-strain responses of elements with different stress states for the tested clays.

Deformational Characteristics of Cohesive Soils Using Resonant Column / Torsional Shear Testing Equipment (공진주/비틂 전단(RC/TS)시험기를 이용한 점성토의 변형특성)

  • 김동수
    • Geotechnical Engineering
    • /
    • v.11 no.1
    • /
    • pp.113-126
    • /
    • 1995
  • Both resonant column (RC) and torsional shear(TS) tests were performed at small to intermediate strain levels to investigate deformational characteristics of cohesive soils. The effects of variables such as strain amplitude, loading frequency, and number of loading cycles were studied. Plasticity index was found to be an important variables in evaluating these effects. Soils tested include undisturbed silts and clays and compacted subgrade soils. At small strains below the elastic threshold, shear modulus is independent of number of loading cycles and strain amplitude. Small strain material damping exists wi th ranges be tween 1.1% and 1.7% for 75 tests. The elastic threshold strain increases as confining pressure and plasticity index increases. Above the cyclic threshold strain, the modulus of cohesive soil decreases with increasing number of cycles while damping ratio is almost independent of number of load cycles. Moduli and damping ratios of cohesive soils obtanined by RC test are higher than those from 75 test because of the frequency effect. Shear modulus of cohesive soil increases linearly as a function of the logarithm of loading frequency.

  • PDF