• Title/Summary/Keyword: cyclic testing

Search Result 282, Processing Time 0.037 seconds

Nondestructive Evaluation of Temporarily Repaired CFRP Laminates Subjected to Delaminations due to Localized Heating and Cyclic Loading Combined

  • Han, Tae-Young;Kwon, Oh-Yang
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.27 no.3
    • /
    • pp.268-279
    • /
    • 2007
  • The reliability of cold-bonding repair technique of carbon-fiber reinforced plastics (CFRP) laminates, often used as a temporary repair for the airplane maintenance, has been evaluated during cyclic loading and localized heating by nondestructive methods. Major concern was given to the evolution of damage after repair in the form of delaminations due to localized heating and cyclic loading combined. An area of interest both on the specimen repaired by cold-bonding and the specimen without repair where delaminations were induced by localized heating and cyclic loading was monitored by acoustic emission (AE) testing and further examined by pitch-catch low-frequency bond testing, and pulse-echo high-frequency ultrasonic testing. The results showed that the reliability of cold-bonding repair would be significantly reduced by the localized heating and cyclic loading combined rather than by the cyclic loading only. AE monitoring appeared to be an effective and reliable tool to monitor the integrity of temporarily repaired CFRP laminates in terms of the structural health monitoring (SHM) philosophy.

Evaluation of Deformational Characteristics of Railway Roadbeds subjected to Cyclic Load Using Various Testing Methods (다양한 시험기법을 이용한 반복하중을 받는 철도노반의 변형특성 평가)

  • Lee, Seong-Won;Kweon, Gi-Chul;Chung, Jae-Min;Hwang, Taik-Jean
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.1297-1302
    • /
    • 2007
  • It is very important to evaluate the reliable deformational characteristics of soils not only in the analysis of geotechnical structures under working stress conditions as foundation in railroad or road system but also for the soil dynamic problems. Different testing techniques are likely to have different testing conditions as strain amplitude, stress level, loading frequency and number of loading cycles. The deformational characteristics of soils can be affected by these variables. In this paper, the effects on modulus of soils subjected to cyclic load were investigated. For the evaluation of deformational characteristics of soils subjected cyclic load, various testing such as TS, RC, TX, and FFRC tests were performed. It was shown that the modulus evaluated by various testing methods are comparable to each other fairly well when the effects of these factors were properly taken into account. For reliable evaluation, therefore, those effects on the modulus need to be considered, and measured values should be effectively adjusted to actual conditions where the soil is working.

  • PDF

Cyclic behavior of various sands and structural materials interfaces

  • Cabalar, Ali Firat
    • Geomechanics and Engineering
    • /
    • v.10 no.1
    • /
    • pp.1-19
    • /
    • 2016
  • This paper presents the results of an intensive experimental investigation on cyclic behavior of various sands and structural materials interface. Comprehensive measurements of the horizontal displacement and shear stresses developed during testing were performed using an automated constant normal load (CNL) cyclic direct shear test apparatus. Two different particle sizes (0.5 mm-0.25 mm and, 2.0 mm-1.0 mm) of sands having distinct shapes (rounded and angular) were tested in a cyclic direct shear testing apparatus at two vertical stress levels (${\sigma}=50kPa$, and 100 kPa) and two rates of displacement ($R_D=2.0mm/min$, and 0.025 mm/min) against various structural materials (i.e., steel, concrete, and wood). The cyclic direct shear tests performed during this investigation indicate that (i) the shear stresses developed during shearing highly depend on both the shape and size of sand grains; (ii) characteristics of the structural materials are closely related to interface response; and (iii) the rate of displacement is slightly effective on the results.

Cyclic testing of weak-axis steel moment connections

  • Lee, Kangmin;Li, Rui;Jung, Heetaek;Chen, Liuyi;Oh, Kyunghwan
    • Steel and Composite Structures
    • /
    • v.15 no.5
    • /
    • pp.507-518
    • /
    • 2013
  • The seismic performance of six types of weak-axis steel moment connections was investigated through cyclic testing of six full-scale specimens. These weak-axis moment connections were the column-tree type, WUF-B type, FF-W type, WFP type, BFP-B type and DST type weak-axis connections. The testing results showed that each of these weak-axis connection types achieved excellent seismic performance, except the WFP and the WUF-B types. The WFP and WUF-B connections displayed poor seismic performance because a fracture appeared prematurely at the weld joint due to stress concentrations. The column-tree type connection showed the best seismic behavior such that the story drift ratio could reach 5%.

Cyclic behavior of self-centering braces utilizing energy absorbing steel plate clusters

  • Jiawang Liu;Canxing Qiu
    • Steel and Composite Structures
    • /
    • v.47 no.4
    • /
    • pp.523-537
    • /
    • 2023
  • This paper proposed a new self-centering brace (SCB), which consists of four post-tensioned (PT) high strength steel strands and energy absorbing steel plate (EASP) clusters. First, analytical equations were derived to describe the working principle of the SCB. Then, to investigate the hysteretic performance of the SCB, four full-size specimens were manufactured and subjected to the same cyclic loading protocol. One additional specimen using only EASP clusters was also tested to highlight the contribution of PT strands. The test parameters varied in the testing process included the thickness of the EASP and the number of EASP in each cluster. Testing results shown that the SCB exhibited nearly flag-shape hysteresis up to expectation, including excellent recentering capability and satisfactory energy dissipating capacity. For all the specimens, the ratio of the recovered deformation is in the range of 89.6% to 92.1%, and the ratio of the height of the hysteresis loop to the yielding force is in the range of 0.47 to 0.77. Finally, in order to further understand the mechanism of the SCB and provide additional information to the testing results, the high-fidelity finite element (FE) models were established and the numerical results were compared against the experimental data. Good agreement between the experimental, numerical, and analytical results was observed, and the maximum difference is less than 12%. Parametric analysis was also carried out based on the validated FE model to evaluate the effect of some key parameters on the cyclic behavior of the SCB.

A study on the detection method of inner's crack of STS304 pipe using Ultrasonic Testing (초음파 검사법을 이용한 STS304 배관재 내부 균열 측정 방법에 대한 연구)

  • Hwang, Woong-Gi;Lee, Kyung-Min;Woo, Young-Kwan;Seo, Duck-Hee;Lee, Bo-Young
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.415-418
    • /
    • 2011
  • Thermal fatigue is one of the life-limiting damage mechanisms in the nuclear power plant conditions. The turbulent mixing of fluids of different temperatures induces rapid temperature changes to the pipe wall. The successive thermal transients cause varying cyclic thermal stresses. These cyclic thermal stresses cause fatigue crack nucleation and growth similar to the cyclic mechanical stresses. The aim of this study was to fulfil the need by developing an real crack manufacturing method, which would produce realistic cracks. The test material was austenitic STS 304, which is used as pipelines in the reactor coolant system of a nuclear power plants. In order to fabricate thermal fatigue crack similar to realistic crack, successive thermal transients were applied to the specimen. Thermal transient cycles were combined with heating (60sec) and cooling cycle (30sec). And, In order to identify ultrasonic characteristic, it was performed the ultrasonic reflection measuring method for the fabricated specimen. From the results of ultrasonic reflection measuring testing, it was conformed that A-scan results(average 83% of real crack depth) for the TFC reference specimen was more enhanced NDT reliability than results(average 38% of real crack depth) for the EDM notch reference specimen.

  • PDF

An Experimental Study on Dynamic Deformation Properties of Rock Materials using Large Triaxial Testing Apparatus (대형진동삼축시험기를 이용한 암석재료의 동적변형특성에 관한 실험적 연구)

  • 신동훈
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.299-308
    • /
    • 2003
  • In order to investigate the dynamic deformation properties of rockfill materials in small strain level, cyclic triaxial tests were conducted using the large cyclic triaxial testing apparatus, which was developed by Water Resources Research Institute of KOWACO in 2001. Two types of rockfill materials consisting of granite and shale-sandstone were tested in this study. The test results show that G/G$\_$max/ of granite specimen decreases more than that of shale-sandstone with the increase of shear strain and the increase ratio in the maximum shear modulus G$\_$max/ of granite is bigger than the ratio of shale-sandstone.

  • PDF

Using Lamb Waves to Monitor Moisture Absorption in Thermally Fatigued Composite Laminates

  • Lee, Jaesun;Cho, Younho
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.36 no.3
    • /
    • pp.175-180
    • /
    • 2016
  • Nondestructive evaluation for material health monitoring is important in aerospace industries. Composite laminates are exposed to heat cyclic loading and humid environment depending on flight conditions. Cyclic heat loading and moisture absorption may lead to material degradation such as matrix breaking, debonding, and delamination. In this paper, the moisture absorption ratio was investigated by measuring the Lamb wave velocity. The composite laminates were manufactured and subjected to different thermal aging cycles and moisture absorption. For various conditions of these cycles, not only changes in weight and also ultrasonic wave velocity were measured, and the Lamb wave velocity at various levels of moisture on a carbon-epoxy plate was investigated. Results from the experiment show a linear correlation between moisture absorption ratio and Lamb wave velocity at different thermal fatigue stages. The presented method can be applied as an alternative solution in the online monitoring of composite laminate moisture levels in commercial flights.

Cyclic fatigue, bending resistance, and surface roughness of ProTaper Gold and EdgeEvolve files in canals with single- and double-curvature

  • Khalil, Wafaa A.;Natto, Zuhair S.
    • Restorative Dentistry and Endodontics
    • /
    • v.44 no.2
    • /
    • pp.19.1-19.9
    • /
    • 2019
  • Objectives: The purpose of this study was to evaluate the cyclic fatigue, bending resistance, and surface roughness of EdgeEvolve (EdgeEndo) and ProTaper Gold (Dentsply Tulsa Dental Specialties) nickel-titanium (NiTi) rotary files. Materials and Methods: The instruments (n = 15/each) were tested for cyclic fatigue in single- ($60^{\circ}$ curvature, 5-mm radius) and double-curved (coronal curvature $60^{\circ}$, 5-mm radius, and apical curvature of $30^{\circ}$ and 2-mm radius) artificial canals. The number of cycles to fracture was calculated. The bending resistance of both files were tested using a universal testing machine where the files were bent until reach $45^{\circ}$. Scanning electron microscopy and x-ray energy-dispersive spectrometric analysis were used for imaging the fractured segments, while the atomic force microscope was used to quantify the surface roughness average (Ra). Results: EdgeEvolve files exhibited higher cyclic fatigue resistance than ProTaper Gold files in single- and double-curved canals (p < 0.05) and both files were more resistant to cyclic fatigue in single-curved canals than double-curved canals (p < 0.05). EdgeEvolve files exhibited significantly more flexibility than did ProTaper Gold files (p < 0.05). Both files had approximately similar Ni and Ti contents (p > 0.05). EdgeEvolve files showed significantly lower Ra values than ProTaper Gold files (p < 0.05). Conclusions: Within the limitation of this study, EdgeEvolve files exhibited significantly higher cyclic fatigue resistance than ProTaper Gold files in both single- and double-curved canals.

Noncontact Fatigue Crack Evaluation Using Thermoelastic Images

  • Kim, Ji-Min;An, Yun-Kyu;Sohn, Hoon
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.6
    • /
    • pp.686-695
    • /
    • 2012
  • This paper proposes a noncontact thermography technique for fatigue crack evaluation under a cyclic tensile loading. The proposed technique identifies and localizes an invisible fatigue crack without scanning, thus making it possible to instantaneously evaluate an incipient fatigue crack. Based on a thermoelastic theory, a new fatigue crack evaluation algorithm is proposed for the fatigue crack-tip localization. The performance of the proposed algorithm is experimentally validated. To achieve this, the cyclic tensile loading is applied to a dog-bone shape aluminum specimen using a universal testing machine, and the corresponding thermal responses induced by thermoelastic effects are captured by an infrared camera. The test results confirm that the fatigue crack is well identified and localized by comparing with its microscopic images.