• Title/Summary/Keyword: cyclic shear

Search Result 734, Processing Time 0.032 seconds

Seismic performance of 1/4-scale RC frames subjected to axial and cyclic reversed lateral loads

  • Bechtoula, Hakim;Sakashita, Masanobu;Kono, Susumu;Watanabe, Fumio
    • Computers and Concrete
    • /
    • v.2 no.2
    • /
    • pp.147-164
    • /
    • 2005
  • This paper summarizes an experimental study on the seismic behavior of lower stories of a mid-rise reinforced concrete frame building. Two reinforced concrete frames with two stories and one span were tested and each frame represents lower two stories of an 11-story RC frame building. Both frames were designed in accordance with Japanese design guidelines and were identical except in the variation of axial force. The tests demonstrated that the overall load-displacement relations of the two frames were nearly the same and the first-story column shear was closely related to the column axial load. The columns and beams elongated during both of the tests, with the second-floor beam elongation exceeding 1.5% of the beam clear span length. The frame with higher axial loads developed more cracks that the frame under moderate axial load.

Optimal distribution of steel plate slit dampers for seismic retrofit of structures

  • Kim, Jinkoo;Kim, Minjung;Eldin, Mohamed Nour
    • Steel and Composite Structures
    • /
    • v.25 no.4
    • /
    • pp.473-484
    • /
    • 2017
  • In this study a seismic retrofit scheme for a building structure was presented using steel plate slit dampers. The energy dissipation capacity of the slit damper used in the retrofit was verified by cyclic loading test. Genetic algorithm was applied to find out the optimum locations of the slit dampers satisfying the target displacement. The seismic retrofit of the model structure using the slit dampers was compared with the retrofit with enlarging shear walls. A simple damper distribution method was proposed using the capacity spectrum method along with the damper distribution pattern proportional to the inter-story drifts. The validity of the simple story-wise damper distribution procedure was verified by comparing the results of genetic algorithm. It was observed that the capacity-spectrum method combined with the simple damper distribution pattern leaded to satisfactory story-wise distribution of dampers compatible with the optimum solution obtained from genetic algorithm.

Prediction of terminal density through a two-surface plasticity model

  • Won, Jongmuk;Kim, Jongchan;Park, Junghee
    • Geomechanics and Engineering
    • /
    • v.23 no.5
    • /
    • pp.493-502
    • /
    • 2020
  • The prediction of soil response under repetitive mechanical loadings remains challenging in geotechnical engineering applications. Modeling the cyclic soil response requires a robust model validation with an experimental dataset. This study proposes a unique method adopting linearity of model constant with the number of cycles. The model allows the prediction of the terminal density of sediments when subjected to repetitive changes in pore-fluid pressure based on the two-surface plasticity. Model simulations are analyzed in combination with an experimental dataset of sandy sediments when subjected to repetitive changes in pore fluid pressure under constant deviatoric stress conditions. The results show that the modified plastic moduli in the two-surface plasticity model appear to be critical for determining the terminal density. The methodology introduced in this study is expected to contribute to the prediction of the terminal density and the evolution of shear strain at given repetitive loading conditions.

Experimental Evaluation of the Seismic Performance for Lintel Beam Type Steel Damper (인방형 강재댐퍼의 구조성능에 대한 실험적 연구)

  • Ro, Kyong Min;Kim, Min Sook;Lee, Young Hak
    • Journal of Korean Association for Spatial Structures
    • /
    • v.17 no.4
    • /
    • pp.77-84
    • /
    • 2017
  • As an alternative to coupling beam in shear wall system, application of the damper which can dissipate energy is increasing. In this study, lintel beam type steel damper which is simple to construct and change depending on design load was proposed. Cyclic loading test was conducted to compare reinforced concrete coupling beam and lintel beam type steel damper. The test results showed that lintel beam type steel damper has higher initial stiffness and energy dissipation capacity than reinforced concrete coupling beam.

Seismic Ductility Assessment of RC Bridge Piers With Minor Earthquake Damage By the Quasi Static Test (유사정적실험에 의한 지진이력 철근콘크리트 교각의 내진 연성도 평가)

  • 이은희;정영수;박창규;김영섭
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.505-511
    • /
    • 2003
  • Experimental investigation was conducted into the flexure/shear-critical behavior of earthquake-damaged reinforced concrete columns with lap splicing of longitudinal reinforcement in the plastic hinge region. Six test specimens in the aspect ratio of 2,5 were made with test parameters: confinement ratios, lap splices, and retrofitting FRP materials. They were damaged under series of artificial earthquakes of which magnitude could be compatible in Korean peninsula. Directly after the pseudo-dynamic test, damaged columns were retested under inelastic reversal cyclic loading simultaneously under a constant axial load, P=$0.1f_{ck}A_g. Residual seismic performance of damaged columns was evaluated and compared to that of the corresponding original columns. Test results show that RC bridge piers with lap-spliced longitudinal steels in the plastic hinge region appeared to fail at low ductility. This was due to the debonding of the lap splice, which resulted from insufficient development of the longitudinal steels. The specimens externally wrapped with composite FRP straps in the potential plastic hinge region indicated significant improvement both in flexural strength and displacement ductility, and strain energy ductility.

  • PDF

Shear Behavior of Wide Beam-Column Joints with Slab (슬래브가 있는 넓은 보-기둥 접합부의 전단거동)

  • 안종문;최종인;신성우;이범식;박성식;양지수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.157-162
    • /
    • 2003
  • An experimental investigation was conducted to study the behavior of high-strength RC wide beam-column joints with slab subjected to reversed cyclic loads under constant axial load. Six half scale interior wide beam-column assemblies representing a portion of a frame subjected to simulated seismic loading were tested, including three specimens without slab and three specimens with slab. The primary variables were compressive strength of concrete($f_ck$=285, 460kgf/$cm^2$), the ratio of the column-to-beam flexural capacity($M_r$=$\Sigma M_c / \Sigma M_b$ ; 0.77 -2.26), extended length of the column concrete($l_d$ ; 0, 12.5, 30cm), ratio of the column-to-beam width(b/H ; 1.54, 1.67). Test results are shown that (1) the behavior of specimen using high-strength concrete satisfied for required minimum ductile capacity according to increase the compressive strength, (2) the current design code and practice for interior joints(type 2) are apply to the wide beam-high strength concrete column.

  • PDF

Deterioration in strength of studs based on two-parameter fatigue failure criterion

  • Wang, Bing;Huang, Qiao;Liu, Xiaoling
    • Steel and Composite Structures
    • /
    • v.23 no.2
    • /
    • pp.239-250
    • /
    • 2017
  • In the concept of two-parameter fatigue failure criterion, the material fatigue failure is determined by the damage degree and the current stress level. Based on this viewpoint, a residual strength degradation model for stud shear connectors under fatigue loads is proposed in this study. First, existing residual strength degradation models and test data are summarized. Next, three series of 11 push-out specimen tests according to the standard push-out test method in Eurocode-4 are performed: the static strength test, the fatigue endurance test and the residual strength test. By introducing the "two-parameter fatigue failure criterion," a residual strength calculation model after cyclic loading is derived, considering the nonlinear fatigue damage and the current stress condition. The parameters are achieved by fitting the data from this study and some literature data. Finally, through verification using several literature reports, the results show that the model can better describe the strength degradation law of stud connectors.

Fatigue damage detection of CFRP using the electrical resistance change method

  • Todoroki, Akira;Mizutani, Yoshihiro;Suzuki, Yoshiro;Haruyama, Daichi
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.14 no.4
    • /
    • pp.350-355
    • /
    • 2013
  • Electrical resistance change measurements were performed, to detect fatigue damage of a quasi-isotropic CFRP and cross-ply CFRP laminates. A four-probe method was used to measure the exact electrical resistance change. A three-probe method was used to measure the electrical contact resistance change, during long cyclic loading. The specimen side surface was observed using a video-microscope to detect damage. The measured electrical resistance changes were compared with the observed damage. The results of this study show that the electrical resistance increase of the quasi-isotropic laminate was caused by a delamination crack between ${\pm}45^{\circ}$ plies. Matrix cracking caused a small electrical resistance increase of the cross-ply laminate, but the decreased electrical resistance caused by the shear-plastic deformation impedes matrix-cracking detection.

Experimental investigation of reinforced concrete columns retrofitted with polyester sheet

  • Chang, Chunho;Kim, Sung Jig;Park, Dongbyung;Choi, Sunghun
    • Earthquakes and Structures
    • /
    • v.6 no.3
    • /
    • pp.237-250
    • /
    • 2014
  • This paper experimentally investigates the seismic performance of RC columns retrofitted with Super Reinforcement with Flexibility (SRF), which is a polyester fiber reinforced polymer. A total of three specimens with a scale factor of 1/2 were constructed and tested in order to assess the structural behavior of the retrofitted RC columns. One specimen was a non-seismically designed column without any retrofit, while others were retrofitted with either one or two layers of the polyester belt with urethane as the adhesive. Static cyclic testing with a constant axial load was conducted to assess the seismic performance of the retrofitted RC columns. It is concluded that the SRF retrofitting method increases the strength and ductility of the RC columns and can also impact on the failure mode of the columns.

Experimental and numerical studies on the frame-infill in-teraction in steel reinforced recycled concrete frames

  • Xue, Jianyang;Huang, Xiaogang;Luo, Zheng;Gao, Liang
    • Steel and Composite Structures
    • /
    • v.20 no.6
    • /
    • pp.1391-1409
    • /
    • 2016
  • Masonry infill has a significant effect on stiffness contribution, strength and ductility of masonry-infilled frames. These effects may cause damage of weak floor, torsional damage or short-column failure in structures. This article presents experiments of 1/2.5-scale steel reinforced recycled aggregates concrete (SRRC) frames. Three specimens, with different infill rates consisted of recycled concrete hollow bricks (RCB), were subjected to static cyclic loads. Test phenomena, hysteretic curves and stiffness degradation of the composite structure were analyzed. Furthermore, effects of axial load ratio, aspect ratio, infill thickness and steel ratio on the share of horizontal force supported by the frame and the infill were obtained in the numerical example.