• Title/Summary/Keyword: cyclic lateral loading

Search Result 256, Processing Time 0.028 seconds

Analysis of Hysteresis Characteristics of Buckling Restrained Brace According to Lateral buckling prevention Method (횡좌굴 방지방식에 따른 비좌굴가새의 이력특성 분석)

  • Kim, Yu-Seong;Lee, Joon-Ho;Kim, Gee-Chul
    • Journal of Korean Association for Spatial Structures
    • /
    • v.23 no.1
    • /
    • pp.61-68
    • /
    • 2023
  • Buckling Restrained Braces can not only express the strength considered at the time of design, but also reduce the seismic load by energy dissipation according to the plastic behavior after yield deformation of the steel core. The physical characteristics and damping effect may be different according to the buckling prevention method of the steel core by the lateral restraint element. Accordingly, in this study, To compare hysteresis characteristics, Specimen(BRB-C) filled with mortar, specimen(BRB-R) combined with a buckling restraint ring and Specimen(BRB-EP) filled with engineering plastics was fabricated, and a cyclic loading test was performed. As a result of the cyclic loading test, the maximum compressive strength, cumulative energy dissipation and ductility of each test specimen was similar. But in case of the cumulative energy dissipation and ductility, BRB-C filled with the mortar specimen showed the lowest. This is considered to be because the gap between the steel core and the reinforcing material for plastic deformation was not uniformly formed by pouring mortar around the core part.

Investigation of Damping Ratio of Steel Plate Concrete (SC) Shear Wall by Lateral Loading Test & Impact Test (횡방향 가력실험 및 충격실험을 통한 강판콘크리트(SC) 전단벽의 감쇠비 평가)

  • Cho, Sung Gook;So, Gi Hwan;Park, Woong Ki
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.17 no.2
    • /
    • pp.79-88
    • /
    • 2013
  • Steel plate concrete (SC) composite structure is now being recognized as a promising technology applicable to nuclear power plants as it is faster and suitable for modular construction. It is required to identify its dynamic characteristics prior to perform the seismic design of the SC structure. Particularly, the damping ratio of the structure is one of the critical design factors to control the dynamic response of structure. This paper compares the criteria for the damping ratios of each type of structures which are prescribed in the regulatory guide for the nuclear power plant. In order to identify the damping ratio of SC shear wall, this study made SC wall specimens and conducted experiments by cyclic lateral load tests and vibration tests with impact hammer. During the lateral loading test, SC wall specimens exhibited large ductile capacities with increasing amplitude of loading due to the confinement effects by the steel plate and the damping ratios increased until failure. The experimental results show that the damping ratios increased from about 6% to about 20% by increasing the load from the safe shutdown earthquake level to the ultimate strength level.

Structural health monitoring of seismically vulnerable RC frames under lateral cyclic loading

  • Chalioris, Constantin E.;Voutetaki, Maristella E.;Liolios, Angelos A.
    • Earthquakes and Structures
    • /
    • v.19 no.1
    • /
    • pp.29-44
    • /
    • 2020
  • The effectiveness and the sensitivity of a Wireless impedance/Admittance Monitoring System (WiAMS) for the prompt damage diagnosis of two single-storey single-span Reinforced Concrete (RC) frames under cyclic loading is experimentally investigated. The geometrical and the reinforcement characteristics of the RC structural members of the frames represent typical old RC frame structure without consideration of seismic design criteria. The columns of the frames are vulnerable to shear failure under lateral load due to their low height-to-depth ratio and insufficient transverse reinforcement. The proposed Structural Health Monitoring (SHM) system comprises of specially manufactured autonomous portable devices that acquire the in-situ voltage frequency responses of a network of twenty piezoelectric transducers mounted to the RC frames. Measurements of external and internal small-sized piezoelectric patches are utilized for damage localization and assessment at various and increased damage levels as the magnitude of the imposed lateral cycle deformations increases. A bare RC frame and a strengthened one using a pair of steel crossed tension-ties (X-bracing) have been tested in order to check the sensitivity of the developed WiAMS in different structural conditions since crack propagation, damage locations and failure mode of the examined frames vary. Indeed, the imposed loading caused brittle shear failure to the column of the bare frame and the formation of plastic hinges at the beam ends of the X-braced frame. Test results highlighted the ability of the proposed SHM to identify incipient damages due to concrete cracking and steel yielding since promising early indication of the forthcoming critical failures before any visible sign has been obtained.

Cyclic Lateral Loading Test for Cast-In-Place Concrete-Filled Hollow PC Columns Using Permanent Inner form (영구 내부거푸집을 이용한 현장타설 콘크리트 채움중공 PC기둥의 반복횡가력실험)

  • Lee, Ho-Jun;Park, Hong-Gun;Kim, Chang-Soo;Hwang, Hyeon-Jong
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.2
    • /
    • pp.129-139
    • /
    • 2016
  • Cast-in-place concrete-filled hollow PC (HPC) columns are used to reduce lifting load of heavy-weight PC columns and to improve the structural integrity of joints. In the present study, a new type of HPC column was proposed to improve the productivity and structural integrity of the concrete. To form the hollow PC columns, a permanent inner form was prefabricated using structural deck plates and penetrated lateral bars. Half-scale specimens of four HPC columns were tested under combined axial compression and lateral cyclic loading to evaluate the seismic resistance. In the design of test specimens, various parameters such as the spacing of lateral re-bars, the use of steel fiber, and the thickness of PC cover were considered. The test results showed that the proposed HPC columns generally exhibited satisfactory load-carrying capacity and deformation capacity without brittle failure of PC. If closely spaced hoops or fiber reinforcements are used for PC, the deformation capacity can be improved further by restraining PC spalling.

A Experimental Study for Stress-Strain Behavior and Energy Capacity of Confinement Steel (심부구속철근의 응력-변형률 거동 및 에너지 성능에 관한 실험적 연구)

  • Lee, Jae-Hoon;Ko, Seong-Hyun;Hwang, Jung-Kil;Son, Hyun-A
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.77-80
    • /
    • 2006
  • Longitudinal reinforcements of the plastic hinge region were behaved tensile deformation and compressional deformation by direction of lateral loading. However Confinement steels were behaved only tensile deformation by lateral loading. Transverse steels were laid the state of tension in the lateral loading of time, and they were laid state that stress is zero when it was removed lateral load. Nine specimens were tested under cyclic stresses(tension and zero). The purpose of this research is to investigate the strain behavior and capacity of energy for confinement steel. The selected test variables are $L/d_b(L/d_b=6)$, size of reinforcement and specified yielding strength(300, 400, 500 MPa).

  • PDF

Static and Repeat Loads Model Test on Soft Clay Layer due to the Geotextile Reinforcement (토목섬유로 보강된 연약지반의 정.동적 모형실험)

  • Kim, Young-Su;Kwon, Sung-Mok;Kim, Yeun-Wook;Kim, Hyoung-Jun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.232-239
    • /
    • 2005
  • Recently geosynthetics that can be constructed on soft ground have been used for reinforcement and separation in various ways. Through laboratory model tests and numerical analysis, in this study, estimated the suitability of cable elements and appropriate input factors considering loading effect in modeling of geosynthetics. First, in laboratory model tests, geosynthetics were constructed on the clay, and covered with the thickness, 7.5cm of sand mat. And then static and dynamic model tests were performed measuring loading, settlement, ground lateral displacement, and displacements of geosynthetics, but, for cyclic loading, bearing capacity increased linearly with stiff slop because cyclic loading with constant cyclic pressure compacted the ground. Numerical analysis were performed with FLAC 4.0 2D using Mohr-Coulomb and Modified Cam-Clay models, and they compared with the results of model tests. Cable elements of FLAC in modeling geosynthetics couldn't consider the characteristics of geosynthetics that increase shear strength between geosynthetics and clay according to the loading increase. Therefore, in this study, appropriate equation that can consider loading effects in Cable elements was proposed by Case Study.

  • PDF

Experimental Study on the Structural Behaviour of Rotary Friction Damper (회전형 복합마찰댐퍼 구조거동에 대한 실험적 연구)

  • Kim, Do-Hyun;Kim, Ji-Young;Kim, Myeong-Han
    • Journal of Korean Association for Spatial Structures
    • /
    • v.15 no.4
    • /
    • pp.73-80
    • /
    • 2015
  • The new rotary friction damper was developed using several two-nodal rotary frictional components with different clamping forces. Because of these components, the rotary friction damper can be activated by building movements due to lateral forces such as a wind and earthquake. In this paper, various dependency tests such as displacement amplitude, forcing frequency and long term cyclic loading were carried out to evaluate on the structural performance and the multi-slip mechanism of the new damper. Test results show that the multi-slip mechanism is verified and friction coefficients are dependent on displacement amplitute and forcing frequency except long term cyclic loading.

Behaviour of composite walls under monotonic and cyclic shear loading

  • Hossain, K.M. Anwar;Wright, H.D.
    • Structural Engineering and Mechanics
    • /
    • v.17 no.1
    • /
    • pp.69-85
    • /
    • 2004
  • The novel form of composite walling system consists of two skins of profiled steel sheeting with an in-fill of concrete. Such walling system can be used as shear elements in steel framed building subjected to lateral load. This paper presents the results of small-scale model tests on composite wall and its components manufactured from very thin sheeting and micro-concrete tested under monotonic and cyclic shear loading conditions. The heavily instrumented small-scale tests provided information on the load-deformation response, strength, stiffness, strain condition, sheet-concrete interaction and failure modes. Analytical models for shear strength and stiffness are derived with some modification factor to take into account the effect of quasi-static cycling loading. The performance of design equations is validated through experimental results.

Cyclic Lateral Load Test on the Punching Shear Strength and the Lateral Displacement Capacity of Slab-Column Connections (슬래브-기둥 접합부의 펀칭강도 및 횡변위 성능에 관한 반복 횡하중 실험)

  • Choi, Jung-Wook;Song, Jin-Gyu;Kim, Jun-Hee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.4
    • /
    • pp.99-108
    • /
    • 2007
  • In the flat-plate slab design of the KCI and ACI building code, the punching shear strength of connections with shear reinforcement can increase one and half times to that of connections without shear reinforcement. And the ACI-ASCE committee 352 recommendations propose limiting the direct shear ratio $V_g$/$V_c$ on interior connections to 0.4 to insure adequate drift capacity. In this study, four interior column-slab connections were tested to look into the punching shear strength and the lateral displacement capacity of the flat-plate slab with and without shear reinforcement under cyclic lateral loading. Based on the test results, it is found that the provision about punching shear strength in the codes may appropriate for the gravity loading only whereas it is unconservative for the lateral loading and that the limit of ACI-ASCE committee 352 appears conservative.

Damage Assessment of RC Column-Bent Pier under Bidirection Loading (이축 하중을 받는 이주형 철근콘크리트 교각의 손상도평가)

  • Park Chang Kyu;Lee Beom Gi;Yun Sang Chul;Chung Young Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.203-206
    • /
    • 2005
  • Reinforced concrete(RC) column-bent piers represent one of the popular piers used in highway bridges of Korea. Seismic performance of RC column-bent piers under bi-directional seismic loadings was experimentally investigated. Six column bent piers were constructed with two circular supporting columns which were made in 400 mm diameter and 2,000 mm height. Test parameters are different transverse reinforcement ratio and loading pattern. Three specimens were loaded with bi-directional lateral forces which were main cyclic loads in the longitudinal direction and sub-cyclic loads in the transverse direction. Other three specimens were loaded in the opposite way. Test results indicated that lateral strength and ductility of the latter specimens were bigger than those of the former specimens. Plastic hinge was formed with the spall of cover concrete and the fracture of the longitudinal reinforcing steels in the bottom part of two supporting columns for the former three specimens. Similar behavior was observed in the top and bottom parts of two supporting columns for the latter three specimens.

  • PDF