• Title/Summary/Keyword: cyclic lateral loading

Search Result 256, Processing Time 0.022 seconds

Mechanical behavior of steel tube encased high-strength concrete composite walls under constant axial load and cyclically increasing lateral load: Experimental investigation and modeling

  • Liang Bai;Huilin Wei;Bin Wang;Fangfang Liao;Tianhua Zhou;Xingwen Liang
    • Steel and Composite Structures
    • /
    • v.47 no.1
    • /
    • pp.37-50
    • /
    • 2023
  • This paper presented an investigation into steel tubes encased high-strength concrete (STHC) composite walls, wherein steel tubes were embedded at the boundary elements of high-strength concrete walls. A series of cyclic loading tests was conducted to evaluate the failure pattern, hysteresis characteristics, load-bearing capacity, deformability, and strain distribution of STHC composite walls. The test results demonstrated that the bearing capacity and ductility of the STHC composite walls improved with the embedding of steel tubes at the boundary elements. An analytical method was then established to predict the flexural bearing capacity of the STHC composite walls, and the calculated results agreed well with the experimental values, with errors of less than 10%. Finally, a finite element modeling (FEM) was developed via the OpenSees program to analyze the mechanical performance of the STHC composite wall. The FEM was validated through test results; additionally, the influences of the axial load ratio, steel tube strength, and shear-span ratio on the mechanical properties of STHC composite walls were comprehensively investigated.

Retrofit of Artificially Perforated Shear Wall in Existing Structure (인위적인 개구부를 가지는 전단벽의 보강)

  • Kim, Hyun-Min;Choi, Chang-Sik;Choi, Youn-Cheul;Lee, Li-Hyung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.4
    • /
    • pp.51-61
    • /
    • 2007
  • A series of three shear wall specimens were tested under constant axial stress and reversed cyclic lateral loading to evaluate the capacity of seismic retrofit proposed for the shear wall with the opening induced by remodeling. One specimen was tested in the as-built condition and the others were retrofitted prior to testing. The retrofit involved the use of carbon fiber sheets and steel plates (thickness ; 3mm) over the entire face of the wall. Specimens were 1/2-scale representations of a one-story wall in a Korean apartment building that was built in 1980. The test results showed that failure mechanism of specimens governed by shear fracture and the strength of specimens was varied with according to the retrofitting strategies.

Shotcrete-Retrofit of Shear Walls with an Opening (개구부를 가지는 전단벽의 숏크리트 보강)

  • Choi, Youn-Cheul;Choi, Chang-Sik;Kim, Hyun-Min;Lee, Li-Hyung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.5
    • /
    • pp.71-80
    • /
    • 2007
  • Because of the characteristics relating to high tensile ductility, High Performance Fiber Reinforced Cementitious Composites (HPFRCC) are studied to be adopted in repair and retrofit of buildings. A series of three shear wall specimens was tested under constant axial stress and reversed cyclic lateral loading in order to evaluate the seismic retrofit that had been proposed for the shear wall with the opening. The retrofit involved the use of newly developed ECC and MDF(Macro Defect Free), both of which are sprayed through the high pressure pump, over the entire face of the wall. The results indicate that two difference types of retrofitting strategy make the different effects of a rise in the strength and ductility of each specimen.

Seismic Resistance of Cast-In-Place Concrete-Filled Hollow PC Columns (현장타설 콘크리트 채움 중공 PC기둥의 내진성능)

  • Lim, Woo-Young;Park, Hong-Gun;Oh, Jung-Keun;Kim, Chang-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.1
    • /
    • pp.35-46
    • /
    • 2014
  • Two types of cast-in-place concrete-filled hollow PC (HPC1, HPC2) columns were developed to reduce lifting load of heavy-weight PC columns and to improve the structural integrity of joints. To form the hollow PC columns, a couple of prefabricated PC panels was used for HPC1, and special hoops were used for HPC2. Lateral pressure of wet concrete on PC faces was measured while placing the concrete inside the columns. To evaluate the seismic resistance, full scale specimens of two HPC columns and a conventional RC column were tested under combined axial compression and lateral cyclic loading. The test results showed that the structural performance of the proposed HPC columns such as intial stiffness, maximum strength, and displacement ductility was comparable to that of the conventional RC column, but the energy dissipation of HPC2 slightly decreased after rebar-buckling. However, all the test specimens satisfied the energy dissipation requirement specified in ACI 374.

Seismic Behavior of Columns in Ordinary and Intermediate Moment Frames (보통과 중간 모멘트 골조 기둥의 내진거동 비교)

  • Han Sailg-Whan
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.1 s.85
    • /
    • pp.51-58
    • /
    • 2005
  • Moment frames have been widely used in building construction. In current design codes, concrete moment frames are classified into ordinary, intermediate, and special moment resisting concrete frames (OMRCF, IMRCF, SMRCF)). The objective of this study is to investigate the seismic behavior of columns in ordinary moment resisting concrete frames (OMRCF) and intermediate moment resisting concrete frames (IMRCF). For this purpose 3 story OMRCF and IMRCF buildings were designed and detailed in compliance to ACI 318 (2002) and KCI (1999). In this study the buildings were assumed to be located in seismic zone 1 classified by UBC (1997). This study considered the columns in the 1st story since these columns shall resist the largest axial and lateral forces during an earthquake. Eight 2/3 scale column specimens were made for representing the upper part and lower part of exterior and interior columns of the OMRCF and the IMRCF Quasi-static reversed cyclic loading was applied to each specimen with a constant or varying axial load. Test results show that seismic behaviors of columns are influenced by existence of lap splices, axial force levels, and lateral reinforcement at possible plastic hinging region. However, the effect of such variables strongly co-related to each other.

Experiments of the Lateral Loading Capacity of Exterior Joints of Non-seismically Designed RC Frames in Korea (비내진설계된 우리나라 RC 외부 접합부의 횡저항 능력에 관한 실험)

  • Lee, Young-Wook;Park, Hyeong-Kyeon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.14 no.4
    • /
    • pp.29-36
    • /
    • 2010
  • To investigate the cyclic characteristics of exterior joints in RC frame buildings which are typically used after 1988, 70% scaled T-shaped beam-column subassemblies were designed and tested with a displacement control that is composed of 9 steps, until 3.5% story drift was reached. Axial forces are applied to columns during the experiment to simulate a real situation. The results show that the non-seismic detailed specimens failed before reaching 0.85% story drift, and their strengths are less than 0.85 times the nominal flexural strength which beam or columns should reach. The relationship of principal stress and story drift of exterior joints is similar to the one that Priestly proposed.

Seismic improvement of infilled nonductile RC frames with external mesh reinforcement and plaster composite

  • Kamanli, Mehmet;Korkmaz, Hasan H.;Unal, Alptug;Balik, Fatih S.;Bahadir, Fatih;Cogurcu, Mustafa T.
    • Earthquakes and Structures
    • /
    • v.8 no.3
    • /
    • pp.761-778
    • /
    • 2015
  • The objective of this paper is to report the result of an experimental program conducted on the strengthening of nonductile RC frames by using external mesh reinforcement and plaster application. The main objective was to test an alternative strengthening technique for reinforced concrete buildings, which could be applied with minimum disturbance to the occupants. Generic specimen is two floors and one bay RC frame in 1/2 scales. The basic aim of tested strengthening techniques is to upgrade strength, ductility and stiffness of the member and/or the structural system. Six specimens, two of which were reference specimens and the remaining four of which had deficient steel detailing and poor concrete quality were strengthened and tested in an experimental program under cyclic loading. The parameters of the experimental study are mesh reinforcement ratio and plaster thickness of the infilled wall. The effects of the mesh reinforced plaster application for strengthening on behavior, strength, stiffness, failure mode and ductility of the specimens were investigated. Premature and unexpected failure mode has been observed at first and second specimens failed due to inadequate plaster thickness. Also third strengthened specimen failed due to inadequate lap splice of the external mesh reinforcement. The last modified specimen behaved satisfactorily with higher ultimate load carrying capacity. Externally reinforced infill wall composites improve seismic behavior by increasing lateral strength, lateral stiffness, and energy dissipation capacity of reinforced concrete buildings, and limit both structural and nonstructural damages caused by earthquakes.

Earthquake-resistant rehabilitation of existing RC structures using high-strength steel fiber-reinforced concrete jackets

  • Kalogeropoulos, George I.;Tsonos, Alexander-Dimitrios G.;Konstantinidis, Dimitrios;Iakovidis, Pantelis E.
    • Earthquakes and Structures
    • /
    • v.17 no.1
    • /
    • pp.115-129
    • /
    • 2019
  • The effectiveness of an innovative method for the earthquake-resistant rehabilitation of existing poorly detailed reinforced concrete (RC) structures is experimentally investigated herein. Eight column subassemblages were subjected to earthquake-type loading and their hysteretic behaviour was evaluated. Four of the specimens were identical and representative of columns found in RC structures designed in the 1950s-70s period for gravity load only. These original specimens were subjected to cyclic lateral deformations and developed brittle failure mechanisms. Three of the damaged specimens were subsequently retrofitted with innovative high-strength steel fiber-reinforced concrete (HSSFC) jackets. The main variables examined were the jacket width and the contribution of mesh steel reinforcement in the seismic performance of the enhanced columns. The influence of steel fiber volume fraction was also examined using test results of a previous work of Tsonos et al. (2017). The fourth earthquake damaged subassemblage was strengthened with a conventional RC jacket and was subjected to the same lateral displacement history as the other three retrofitted columns. The seismic behaviour of the subassemblages strengthened according to the proposed retrofit scheme was evaluated with respect to that of the original specimens and that of the column strengthened with the conventional RC jacket. Test results clearly demonstrated that the HSSFC jackets effectively prevented the development of shear failure mechanisms, while ensuring a ductile seismic response similar to that of the subassemblage retrofitted with the conventional RC jacket. Ultimately, an indisputable superiority in the overall seismic performance of the strengthened columns was achieved with respect to the original specimens.

Experimental investigation of a frame retrofitted with carbon textile reinforced mortar

  • Sinan M., Cansunar;Kadir, Guler
    • Earthquakes and Structures
    • /
    • v.23 no.5
    • /
    • pp.473-491
    • /
    • 2022
  • The research investigates experimentally the effect of confinement on structural behavior at the ends of beam-column in reinforced concrete (RC) frames. In the experimental study, five specimens consisting of 1/3-scaled RC frames having single-bay, representing the traditional deficiencies of existing buildings constructed without receiving proper engineering service is investigated. The RC frame specimens were produced to represent most of the existing buildings in Turkey that have damage potential. To decrease the probable damage to the existing buildings exposed to earthquakes, the carbon Textile Reinforced Mortar (TRM) strengthening technique (fully wrapping) was used on the ends of the RC frame elements to increase the energy dissipation and deformation capacity. The specimens were tested under reversed cyclic lateral loading with constant axial loads. They were constructed satisfying the weak column-strong beam condition and consisting of low-strength concrete, such as compressive strength of 15 MPa. The test results were compared and evaluated considering stiffness, strength, energy dissipation capacity, structural damping, ductility, and damage propagation in detail. Comprehensive investigations of these experimental results reveal that the strengthening of a brittle frame with fully-TRM wrapping with non-anchored was effective in increasing the stiffness, ductility, and energy dissipation capacities of RC bare frames. It was also observed that the frame-only-retrofitting with an infill wall is not enough to increase the ductility capacity. In this case, both the frame and infill wall must be retrofitted with TRM composite to increase the stiffness, lateral load carrying, ductility and energy dissipation capacities of RC frames. The presented strengthening method can be an alternative strengthening technique to enhance the seismic performance of existing or moderately damaged RC buildings.

Damage and deformation of new precast concrete shear wall with plastic damage relocation

  • Dayang Wang;Qihao Han;Shenchun Xu;Zhigang Zheng;Quantian Luo;Jihua Mao
    • Steel and Composite Structures
    • /
    • v.48 no.4
    • /
    • pp.385-403
    • /
    • 2023
  • To avoid premature damage to the connection joints of a conventional precast concrete shear wall, a new precast concrete shear wall system (NPSW) based on a plastic damage relocation design concept was proposed. Five specimens, including one monolithic cast-in-place concrete shear wall (MSW) as a reference and four NPSWs with different connection details (TNPSW, INPSW, HNPSW, and TNPSW-N), were designed and tested by lateral low-cyclic loading. To accurately assess the damage relocation effect and quantify the damage and deformation, digital image correlation (DIC) and conventional data acquisition methods were used in the experimental program. The concrete cracking development, crack area ratio, maximum residual crack width, curvature of the wall panel, lateral displacement, and deformed shapes of the specimens were investigated. The results showed that the plastic damage relocation design concept was effective; the initial cracking occurred at the bottom of the precast shear wall panel (middle section) of the proposed NPSWs. The test results indicated that the crack area ratio and the maximum residual crack width of the NPSWs were less than those of the MSW. The NPSWs were deformed continuously; significant distortions did not occur in their connection regions, demonstrating the merits of the proposed NPSWs. The curvatures of the middle sections of the NPSWs were lower than that of the MSW after a drift ratio of 0.5%. Among the NPSWs, HNPSW demonstrated the best performance, as its crack area ratio, concrete damage, and maximum residual crack width were the lowest.