• Title/Summary/Keyword: cyclic dynamic stress

Search Result 109, Processing Time 0.026 seconds

Seismic Response Characteristics of Layered Ground Considering Viscoelastic Effects of Clay (점성토의 점탄성 특성을 고려한 층상지반의 지진응답특성)

  • Kim, Yong-Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.53 no.3
    • /
    • pp.19-26
    • /
    • 2011
  • In order to estimate the viscous effects of clay over a wide range of strain levels, we confirmed the performance of a viscoelastic-viscoplastic constitutive model by simulating cyclic undrained triaxial tests to determine the cyclic strength and deformation characteristics of natural marine clay. The viscoelastic-viscoplastic constitutive model was then incorporated into an effective stress-based seismic response analysis to estimate the effects of an intermediate clay layer on the behavior of sand layers. Seismic response was simulated by the cyclic viscoelastic-viscoplastic constitutive model created with data recorded at Rokko Island, Kobe, Japan. The results show that a cyclic viscoelastic-viscoplastic constitutive model can provide a good description of dynamic behavior including viscoelastic effects, within a small strain range.

Development of Stress Based on Pore Pressure Model (응력 기반 간극수압 모델 개발)

  • Park, Du-Hee;Ahn, Jae-Kwang;Kim, Jin-Man
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.5
    • /
    • pp.95-107
    • /
    • 2012
  • Even though the importance of predicting build-up of pore pressure under cyclic loading is recognized, effective stress analysis is rarely performed due to difficulties in selecting the parameters for the pore pressure model. In this paper, a new stress based numerical model for predicting pore pressure under cyclic loading is developed. The main strength of the model is that it is easy-to-use, requiring only the CSR-N curve in selecting the parameters. Another advantage of the model is that it can be used for any loading pattern and therefore can be implemented in an effective stress time-domain dynamic analysis code. The accuracy of the model is validated through its comparisons with measurements in literature and laboratory test data collected in Korea. Further comparisons with another stress based pore pressure model highlighted the superiority of the proposed model.

An Experimental Study on the Characteristics of Vibro-compaction of Crushed Stones (쇄석의 진동다짐 특성에 관한 실험적 고찰)

  • Jeong, Gil-Soo;Park, Byung-Soo;Hong, Young-Kil;Yoo, Nam-Jae
    • Journal of Industrial Technology
    • /
    • v.24 no.B
    • /
    • pp.89-94
    • /
    • 2004
  • This Study is results of experimental works to investigate the characteristics of vibro-compaction of crushed stones having coarse grain sizes. For testing material, crushed stone, sieved within very narrow ranges of grain size distribution, was used. Cyclic loading apparatus was used to apply cyclic loading to the specimen prepared in the mold. Tests were performed by changing the ratio of the maximum to the minimum stress, frequency and the magnitude of the maximum and the minimum stresses. Settlement of specimen due to cyclic loading was measured to analyze the compaction efficiency and sieve analysis test after cyclic loading test was also carried out to find the crushing rate of the specimen. As results of cyclic loading test, normalized settlement in terms of specimen height tends to be converged around loading cycle number of 1500. The magnitude of normalized settlement is in the range of 3.11 ~ 8.57%. The crushing rate is in the range of 4.46 ~ 8.78%. Normalize settlement and the crushing rate tend to increase with decreasing the ratio of the maximum to the minimum stresses and they tend to increase with increasing the frequency and the magnitude of the maximum and the minimum stresses for the given ratio. In conclusions, compaction rate of crushed stone is controlled by the dynamic stress (difference between the maximum and the minimum stresses) and the crushing rate is dominated by applied energy to the specimen.

  • PDF

The Influence of Dynamic Strain Aging on Tensile and LCF Properties of Prior Cold Worked 316L Stainless Steel (냉간가공된 316L 스테인리스 강의 인장 및 저주기 피로 물성치에 미치는 동적변형시효의 영향)

  • Hong, Seong-Gu;Lee, Soon-Bok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.8
    • /
    • pp.1398-1408
    • /
    • 2003
  • Tensile and LCF(low cycle fatigue) tests were carried out in air at wide temperature range 20$^{\circ}C$-750$^{\circ}C$ and strain rates of 1${\times}$10$\^$-4//s-1${\times}$10$\^$-2/ to ascertain the influence of strain rate on tensile and LCF properties of prior cold worked 316L stainless steel, especially focused on the DSA(dynamic strain aging) regime. Dynamic strain aging induced the change of tensile properties such as strength and ductility in the temperature region 250$^{\circ}C$-600$^{\circ}C$ and this temperature region well coincided with the negative strain rate sensitivity regime. Cyclic stress response at all test conditions was characterized by the initial hardening during a few cycles, followed by gradual softening until final failure. Temperature and strain rate dependence on cyclic softening behavior appears to result from the change of the cyclic plastic deformation mechanism and DSA effect. The DSA regimes between tensile and LCF loading conditions in terms of the negative strain rate sensitivity were well consistent with each other. The drastic reduction in fatigue resistance at elevated temperature was observed, and it was attributed to the effects of oxidation, creep and dynamic strain aging or interactions among them. Especially, in the DSA regime, dynamic strain aging accelerated the reduction of fatigue resistance by enhancing crack initiation and propagation.

The Stress-Strain Behavior of Weathered Granite Soil after Cyclic Loading (화강암 풍화토가 반복하중을 받은 후의 변형거동에 관한 소고)

  • 이종규;김주한
    • Geotechnical Engineering
    • /
    • v.7 no.3
    • /
    • pp.33-42
    • /
    • 1991
  • Increasing demand of rational analysis of dynamic soil behavior subjected to repetitive loading has evolved soil dynamics which is essential for proper design and/or analysis of dynamically loaded soil structure. In this paper, the stress-strain behavior of weathered granite soil under cyclic loading is stud- ied by measuring the strength and the strain before and after application of at least 11, 000 cycles of repetitive load. Relationships are suggested for predicting results of soil dynamics from those of soil statics.

  • PDF

P wave Velocity Variation of the Pochon Granite due to the Cyclic Loadings (압축피로에 의한 포천화강암의 P파속도 변화 특성)

  • Kim, Yeong Hwa;Jang, Bo-An;Kim, Jae Dong;Rhee, Chan Goo;Moon, Byeung Kwan
    • Economic and Environmental Geology
    • /
    • v.30 no.3
    • /
    • pp.231-240
    • /
    • 1997
  • The behavior of rocks and microcrack development due to fatigue stresses are investigated using cyclic loading tests and ultrasonic velocity measurements. Twenty six medium-grained granite samples from the Pochon area are selected for measurements. Ultrasonic velocities are measured for samples before fatigue test to characterize the pre-existing microcracks. Then, thirteen different cycles of loadings with 70% and 80% dynamic strength are applied to the samples. The ultrasonic velocities are measured again to compare velocities after applications of fatigue stress with those before applications of fatigue stress. The results show that most microcracks are developed along the direction parallel to the axis of loading and that the amount of microcracks increases, as loading levels and numbers of cycle increase.

  • PDF

A Two Mobilized-Plane Model for Soil Liquefaction Analysis (액상화해석을 위한 두 개의 활성면을 가진 구성모델)

  • Park, Sung-Sik
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.10
    • /
    • pp.173-181
    • /
    • 2006
  • A Two Mobilized-Plane Model is proposed for monotonic and cyclic soil response including liquefaction. This model is based on two mobilized planes: a plane of maximum shear stress, which rotates, and a horizontal plane which is spatially fixed. By controlling two mobilized planes, the model can simulate the principal stress rotation effect associated with simple shear from different $K_0$ states. The proposed model gives a similar skeleton behaviour for soils having the same mean stress, regardless of $K_0$ conditions as observed in laboratory tests. The soil skeleton behaviour observed in cyclic drained simple shear tests, including compaction during unloading and dilation at large strain is captured in the model. Undrained monotonic and cyclic response is predicted by imposing the volumetric constraint of the water on the drained or skeleton behaviour. This constitutive model is incorporated into the dynamic coupled stress-flow finite difference program of FLAC (Fast Lagrangian Analysis of Continua). The model was first calibrated with drained simple shear tests on Fraser River sand, and verified by comparing predicted and measured undrained behaviour of Fraser River sand using the same input parameters.

Analysis on Thermoelastic Stress in the Cantilever Beam by Lock-in Thermography

  • Kang, K.S.;Choi, M.Y.;Park, J.H.;Kim, W.T.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.28 no.3
    • /
    • pp.273-278
    • /
    • 2008
  • In this paper, effects of thermoelastic stress by using lock-in thermography was measured in the cantilever beam. In experiment, a circular holed plate was applied to analyze variation of transient stress under the condition of repeated cyclic loading. And the finite element modal analysis as computational work was performed. According to the surface temperature obtained from infrared thermography, the stress of the nearby hole was predicted based on thermoelastic equation. As results, each stress distributions between 2nd and 3rd vibration mode were qualitatively and quantitatively investigated, respectively. Also, dynamic stress concentration factors according to the change of vibration amplitude were estimated for the resonance frequency.

Development of Modified Disturbed State Concept Model for Liquefaction Analysis (액상화 해석을 위한 수정교란상태개념 모델 개발)

  • Park, Keun-Bo;Choi, Jae-Soon;Park, Inn-Joon;Kim, Ki-Poong;Kim, Soo-Il
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.3
    • /
    • pp.35-51
    • /
    • 2008
  • In this paper, the application of the DSC model to the analysis of liquefaction potential is examined through experimental and analytical investigations. For more realistic description of dynamic responses of saturated sands, the DSC model was modified based on the dynamic effective stress path and excess pore pressure development. Both static and cyclic undrained triaxial tests were performed for sands with different relative densities and confining stresses. Based on test results, a classification of liquefaction phases in terms of the dynamic effective stress path and the excess pore pressure development was proposed and adopted into the modified DSC model. The proposed methods using the original and modified DSC models were compared with examples with different relative densities and confining stresses. Based on the comparisons between the predicted results using the original and modified DSC models and experimental data, the parameters required to define the model were simplified. It was also found that modified model more accurately simulate initial liquefaction and dynamic responses of soil under cyclic undrained triaxial tests.

Model tests on bearing capacity and accumulated settlement of a single pile in simulated soft rock under axial cyclic loading

  • Zhang, Benjiao;Mei, Can;Huang, Bin;Fu, Xudong;Luo, Gang;Lv, Bu
    • Geomechanics and Engineering
    • /
    • v.12 no.4
    • /
    • pp.611-626
    • /
    • 2017
  • The research reported herein is concerned with the model testing of piles socketed in soft rock which was simulated by cement, plaster, sand, water and concrete hardening accelerator. Model tests on a single pile socketed in simulated soft rock under axial cyclic loading were conducted and the bearing capacity and accumulated deformation characteristics under different static, and cyclic loads were studied by using a device which combined oneself-designed test apparatus with a dynamic triaxial system. The accumulated deformation of the pile head, and the axial force, were measured by LVDT and strain gauges, respectively. Test results show that the static load ratio (SLR), cyclic load ratio (CLR), and the number of cycles affect the accumulated deformation, cyclic secant modulus of pile head, and ultimate bearing capacity. The accumulated deformation increases with increasing numbers of cycles, however, its rate of growth decreases and is asymptotic to zero. The cyclic secant modulus of pile head increases and then decreases with the growth in the number of cycles, and finally remains stable after 50 cycles. The ultimate bearing capacity of the pile is increased by about 30% because of the cyclic loading thereon, and the axial force is changed due to the applied cyclic shear stress. According to the test results, the development of accumulated settlement is analysed. Finally, an empirical formula for accumulated settlement, considering the effects of the number of cycles, the static load ratio, the cyclic load ratio and the uniaxial compressive strength, is proposed which can be used for feasibility studies or preliminary design of pile foundations on soft rock subjected to cyclic loading.