• Title/Summary/Keyword: cyclic carbonate

검색결과 63건 처리시간 0.025초

부틸글리시딜에테르와 이산화탄소의 부가반응에 대한 이온성 액체의 촉매 성능 고찰 (Catalytic Performance of Ionic Liquids for the Cycloaddition of Carbon Dioxide and Butyl Glycidyl Ether)

  • 박대원;주혜영;이미경
    • 한국응용과학기술학회지
    • /
    • 제25권4호
    • /
    • pp.469-476
    • /
    • 2008
  • The synthesis of cyclic carbonate from butyl glycidyl ether (BGE) and carbon dioxide was performed in the presence of three different types of ionic liquid : quarternary ammonium salt, alkyl pyridinium salt, and alkylimidazolium salt. Ionic liquids of different alkyl groups ($C_3$, $C_4$, $C_6$ and $C_8$) and anions ($Cl^-$, $Br^-$ and $I^-$) were used for the reaction which was carried out in a batch autoclave reactor at $60{\sim}120^{\circ}C$. The catalytic activity was increased with increasing alkyl chain length in the order of $C_3$ < $C_4$ < $C_6$. But the ionic liquid with longer alkyl chain length ($C_8$) decreased the conversion of BGE because it is too bulky to form an intermediate with BGE. For the counter anion of the ionic liquid catalysts, the BGE conversion decreased in the order $Cl^-$ > $Br^-$ > $I^-$.

리튬이온전지의 유기용매분해에 따른 SEI film 형성과 전기화학적 거동에 관한 연구 (A study on the SEI film formation as organic solvent decomposition of lithium ion batteries and its electrochemical behavior)

  • 김민성;구할본
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 추계학술대회 논문집 Vol.14 No.1
    • /
    • pp.545-549
    • /
    • 2001
  • We have produced electrolyte solution out of 1.15M $LiPF_6$ EC/EMC/DEC/PC(30/55/10/5 by vol%) as a reference, and at the same time, performed basic physical property test using a single solvent of 1.15M $LiPF_6$ DEC, DMC, EMC and a 2 component electrolyte solution of 1.15M $LiPF_6$ EC/DEC(1/2 by vol%) and PC/DEC(1/2 by vol%). Cyclic Voltammetry Analysis showed that, compared to existing carbonate organic solvent, the addition of DEC,DMC and EMC brought the de-decomposition peak of salt anion of $PF_6$ and the solvent at lower oxidization potential of 2.3V, 0.7V and 2.1V(vs. $Li/Li^+$). In addition, a kinetics current peak, in which intercalation of Lt is proceeded at 750mV, 450mV(vs. $Li/Li^+$), was confirmed. These findings suggest that the DEC solvent decomposition occurred at an electric potential lower than that of oxidization of existing carbonate organic solvent. Through the impedance analysis, we checked electric charge transfer resistance($R_{ct}$) according to the electric potential of $Li^+$ intercalation at 750mV(vs. $Li/Li^+$), which was the same as the resistance ($R_f$) and cyclic voltammetry of SEI film that was formed at Reference. By doing so, we found that the significant decrease of polarization resistance($R_p$) when Reference was played a part in the formation of compact SEI layer at the initial decomposition reaction.

  • PDF

Investigation of a Pseudo Capacitor with Polyacrylonitrile based Gel Polymer Electrolyte

  • Harankahawa, Neminda;Weerasinghe, Sandaranghe;Vidanapathirana, Kamal;Perera, Kumudu
    • Journal of Electrochemical Science and Technology
    • /
    • 제8권2호
    • /
    • pp.107-114
    • /
    • 2017
  • Pseudo capacitors belong to one group of super capacitors which are consisted with non carbon based electrodes. As such, conducting polymers and metal oxide materials have been employed for pseudo capacitors. Conducting polymer based pseudo capacitors have received a great attention due to their interesting features such as flexibility, low cost and ease of synthesis. Much work has been done using liquid electrolytes for those pseudo capacitors but has undergone various drawbacks. It has now been realized the use of solid polymer electrolytes as an alternative. Among them gel polymer electrolytes (GPEs) are in a key place due to their high ambient temperature conductivities as well as suitable mechanical properties. In this study, composition of a polyacrylonitrile (PAN) based GPE was optimized and it was employed as the electrolyte in a pseudo capacitor having polypyrrole (PPy) electrodes. GPE was prepared using ethylene carbonate (EC), propylene carbonate (PC), sodium thiocyanate (NaSCN) and PAN as starting materials. The maximum room temperature conductivity of the GPE was $1.92{\times}10^{-3}Scm^{-1}$ for the composition 202.5 PAN : 500 EC : 500 PC : 35 NaSCN (by weight). Performance of the pseudo capacitor was investigated using Cyclic Voltammetry technique, Electrochemical Impedance Spectroscopy (EIS) technique and Continuous Charge Discharge (GCD) test. The single electrode specific capacity (Cs) was found out to be 174.31 F/g using Cyclic Voltammetry technique at the scan rate of 10 mV/s and within the potential window -1.2 V to 1.2 V. The same value obtained using EIS was about 84 F/g. The discharge capacity ($C_d$) was 69.8 F/g. The capacity fade over 1000 cycles was rather a low value of 4%. The results proved the suitability of the pseudo capacitor for improving the performance further.

리튬이온전지의 유기용매분해에 따른 SEI film형성과 전기화학적 거동에 관한 연구 (A study on the SEI film formation as organic solvent decomposition of lithium ion batteries and its electrochemical behavior)

  • 김민성;구할본
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 추계학술대회 논문집
    • /
    • pp.545-549
    • /
    • 2001
  • We have produced electrolyte solution out of 1.15M LiPF$\sub$6/ EC/EMC/DEC/PC(30/55/10/5 by vol%) as a reference, and at the same time, performed basic physical property test using a single solvent of 1.15M LiPF$\sub$6/DEC, DMC, EMC and a 2 component electrolyte solution of 1.15M LiPF$\sub$6/ EC/DEC(1/2 by vo%%) and PC/DEC(1/2 by vol%). Cyclic Voltammetry Analysis showed that, compared to existing carbonate organic solvent, the addition of DEC, DMC and EMC brought the de-decomposition peak of salt anion of PF$\sub$6/$\^$-/ and the solvent at lower oxidization potential of 2.3V, 0.7V and 2.1V(vs. Li/Li$\^$+/\`). In addition, a kinetics current peak, in which intercalation of Li$\^$+/ is proceeded at 750mv, 450mv(vs. Li/Li$\^$+/), was confirmed. These findings suggest that the DEC solvent decomposition occurred at an electric potential lower than that of oxidization of existing carbonate organic solvent. Through the impedance analysis, we checked electric charge transfer resistance(R$\sub$ct/) according to the electric potential of Li$\^$+/ intercalation at 750mv(vs. Li/Li$\^$+/), which was the same as the resistance (R$\sub$f/) and cyclic voltammetry of SEI film that was formed at Reference. By doing so, we found that the significant decrease of polarization resistance(R$\sub$p/) when Reference was played a part in the formation of compact SEI layer at the initial decomposition reaction.

  • PDF

비등방 압밀 모래의 반복 전단강도 (Cyclic Shear Strength of Anisotropically Consolidated Snnd)

  • Kim, Byung-Tak;Kim, Young-Su;Seo, In-Shik;Jeong, Dong-Gil
    • 한국지반공학회논문집
    • /
    • 제18권3호
    • /
    • pp.73-85
    • /
    • 2002
  • 본 논문에서는 비등방 압밀된 낙동강 포화모래의 비배수 반복 전단강도 거동이 연구되었으며, 등방압밀된 시료의 반복삼축시험은 비등방 압밀시료와의 비교를 위하여 수행되었다. 초기 정적 전단음력과 상대밀도의 다양한 조합하에 반복 전단강도는 고찰되었다. 음력반전과 비응력반전 모두에 대하여 반복하중을 받는 시료의 파괴는 5%의 양진폭변형율과 5%의 잔류축변형율로서 정의하였다. 비등방 압밀된 시료의 반복 전단강도는 초기 정적 전단강도에 영향을 받는 것으로 나타났다. 비등방 압밀 낙동강 모래의 반복 전단강도는 Toyoura 실리카 모래의 전단강도 보다는 크지만, Dogs Bay 카보나이트 모래의 전단강도 보다는 작게 나타났다. 실험결과와 예측결과의 비교에 의하면, 낙동강 모래의 잔류 간극수압에 대한 Hyodo 모델의 적용성이 입증되었다.

Suppression of Co-intercalation on the Carbon Anode by MA Addition in a PC-base Electrolyte

  • Kim, Woo-Seong;Park, Dong-Won;Jung, Hwan-Jung;Choi, Yong-Kook
    • Bulletin of the Korean Chemical Society
    • /
    • 제27권1호
    • /
    • pp.82-86
    • /
    • 2006
  • Propylene Carbonate (PC) has the interesting properties of being able to dissolve and dissociate lithium salts, thus leading to highly conducting electrolytes even at low temperatures. Moreover, electrolytes that contain PC are stable against oxidation at voltages up to ~5 V. However, it is known that, when lithium is intercalated into graphite in pure PC based electrolytes, solvent co-intercalation occurs, leading to the destruction of the graphite structure. (i.e., exfoliation). The objective of this study was to suppress PC decomposition and prevent exfoliation of the graphite anode by co-intercalation. Electrochemical characteristics were studied using Kawasaki mesophase fine carbon (KMFC) in different 1 M $LiPF_6$/PC-based electrolytes. Electrochemical experiments were completed using chronopotentiometry, cyclic voltammetry, impedance spectroscopy, X-ray diffraction, and scanning electron microscopy. From the observed results, we conclude that the MA and $Li_2CO_3$ additive suppressed co-intercalation of the PC electrolyte into the graphite anode. The use of additives, for reducing the extent of solvent decomposition before exfoliation of the graphite anode, could therefore enhance the stability of a KMFC electrode.

Effect of Nitrile-Functionalized Zwitterions on Electrochemical Properties of Electrolytes for Use in Lithium-ion Batteries

  • Lee, Bum-Jin;Kwak, Seung-Yeop
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2012년도 춘계학술발표대회
    • /
    • pp.97.2-97.2
    • /
    • 2012
  • This study examined the utility of two zwitterions, nitrile-functionalized zwitterions and a zwitterion without a nitrile group (MF-ZI), were used as additives along with 1 M $LiPF_6$ in ethylene carbonate (EC):diethylene carbonate (DEC) (3:7 V/V) (E-0) to form an electrolyte solution for use in lithium ion batteries comprising graphite and $LiCoO_2$ electrodes. The presence of NF-ZI (E-NF-ZI) in the electrolyte produced an ion conductivity comparable to that of E-0 and higher than that of an electrolyte containing MF-ZI (E-MF-ZI). Linear sweep voltammetry data revealed that the intensity of the E-NF-ZI reduction peak was lower than that of E-0. Furthermore, the successful formation of an SEI layer in the E-NF-ZI over graphite was confirmed by cyclic voltammetry data. These results were attributed to the adsorption of NF-ZI on the electrode surface, as verified by differential capacity measurements.

  • PDF

폴리스티렌계 고분자에 고정화된 이온성 액체 촉매의 제조와 알릴글리시딜카보네이트 합성 반응 특성 (Preparation, Characterization and Catalytic Performance of Ionic Liquid Immobilized onto Polystyrene-based Polymer for the Synthesis of Allyl Glycidyl Carbonate)

  • 이미경;최혜지;박대원
    • Korean Chemical Engineering Research
    • /
    • 제48권5호
    • /
    • pp.621-626
    • /
    • 2010
  • 본 연구에서는 이미다졸계의 이온성액체를 폴리스티렌계 고분자에 고정화시킨 촉매를 제조하고, 알릴글리시딜에테르(AGE)와 이산화탄소의 부가반응을 통한 알릴글리시딜카보네이트의 합성반응에서 이 촉매의 반응특성을 고찰하였다. 고정화된 이온성액체는 공중합된 폴리스티렌계 고분자에 이미다졸이 고정화됨으로써 형성되었다. 제조된 촉매에 대해서 EA, FT-IR, TGA 그리고 SEM 등 다양한 기기분석을 통하여 특성분석을 수행하였다. 고정화된 이온성액체 촉매는 반응온도 $120^{\circ}C$, 이산화탄소 압력 1.48 MPa에서 AGE 전환율이 80%이고 생성물의 선택도가 96% 이상으로 우수한 반응성을 나타내었다. 또한 고정화된 이온성액체 촉매는 4회 연속 사용하여도 초기의 활성이 크게 감소하지 않아 안정성이 좋은 것으로 나타났다.