• Title/Summary/Keyword: cycleability

Search Result 41, Processing Time 0.02 seconds

Impedance and battery characteristics of PLI bicell with different cathode composition (정극 조성에 따른 PLI bicell의 임피던스 및 전지 특성)

  • Jin, Bong-Soo;Moon, Seong-In;Yoon, Mun-Soo;Choi, Jin-Hong;Yug, Gyeong-Chang;Park, Heai-Ku
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.1067-1070
    • /
    • 2002
  • We have examined the impedance characteristics and the battery characteristics of PLI bicell. As results, the impedance of PLI bicell with 62 wt% cathode active material were lower than the other cathode active material content. And the specific resistances of PLI bicell increased with N/P ratio until 1.85. And the impedance of PLI bicell decreased with increased adding amounts of binder. But the rate capability of PLI bicell were not increased with increased adding amounts of binder. PLI bicell with 9.9 wt% binder content were the best rate capability. but the cycleability were not the same results as the rate capability. PLI bicells with cathode with more than 11 wt% binder, their cycleability were almost same, nevertheless they were better cycleability than 9.9 wt% binderl content.

  • PDF

Charge/Discharge Characteristics of Lithium ion Secondary Battery Using Ag-deposited Graphite as Anode Active Material (은 담지한 흑연을 부극 활물질로 이용한 Lithium ion 2차전지의 충방전 특성)

  • 김상필;조정수;박정후;윤문수
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.9
    • /
    • pp.727-732
    • /
    • 1998
  • Ag-deposited graphite powder was prepared by a chemical reduction method of metal particles onto graphite powder. X-ray diffraction observation of Ag-deposited graphite powder revealed that silver existed in a metallic state, but not in an oxidized one. From SEM measurement, ultrafine silver particles were highly dispersed on the surface of graphite particles. Cylindrical lithium ion secondary battery was manufactured using Ag-deposited graphite anodes and $LiCoO_2$ cathodes. The cycleability of lithium ion secondary battery using Ag-deposited graphite anodes was superior to that of original graphite powder. The improved cycleability may be due to both the reduction of electric resistance between electrodes and the highly durable Ag-graphite anode.

  • PDF

A Study on Electrochemical Characteristics of LiCoO2/LiNi1/3Mn1/3Co1/3O2 Mixed Cathode for Li Secondary Battery (리튬2차전지용 LiCoO2/LiNi1/3Mn1/3Co1/3O2계 복합정극의 전기화학적 특성 연구)

  • Kim Hyun-Soo;Kim Sung-Il;Eom Seung-Wook;Kim Woo-Seong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.1
    • /
    • pp.64-70
    • /
    • 2006
  • In this study, the $LiCoO_2/LiNi_{1/3}Mn_{1/3}Co_{1/3}O_2$ mixed cathode electrodes were prepared and their electrochemical performances were measured in a high cut-off voltage. As the content of $LiNi_{1/3}Mn_{1/3}Co_{1/3}O_2$ increased in a mixed cathode, the reversible specific capacity and cycleability of the electrode enhanced, but the rate capability was deteriorated. On the contrary the rate capability of the cathode enhanced, but the reversible specific capacity and cycleability were deteriorated, increasing the content of $LiCoO_2$ in the mixed cathode. The cell of $LiCoO_2/LiNi_{1/3}Mn_{1/3}Co_{1/3}O_2$ ($50:50 wt\%$) mixed cathode delivered a discharge capacity of ca. 168 mAh/g at a 0.2 C rate. The capacity of the cell decreased with the current rate and a useful capacity of ca. 152 mAh/g was obtained at a 2.0 C rate. However, the cell showed very stable cycleability: the discharge capacity of the cell after 20th charge/discharge cycling maintains ca. 163 mAh/g.

Electrode Properties of Li-ion Batteries using $TiO_2$-based Composite Nanowires ($TiO_2$기반 복합 나노선을 이용한 리튬이온 배터리의 전극 특성 연구)

  • An, Geon-Hyoung;Ahn, Hyo-Jin
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.18 no.3
    • /
    • pp.19-24
    • /
    • 2011
  • we successfully synthesized $TiO_2$-Ag composite nanowires via an electrospinning method and investigated the relationship between their electrochemical properties and structures by means of field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and cycler. It is shown that the $TiO_2$-Ag composite nanowires exhibit superior electrochemical properties when compared to the single $TiO_2$ nanowires and $TiO_2$ nanoparticles (P25, Degussa). Therefore, the results indicate that the introduction of Ag nanophases within the electrospun $TiO_2$ nanowires could be improved the capacitance and cycleability of electrodes in Li-ion batteries.

The Influence of Impurities in Room Temperature Ionic Liquid Electrolyte for Lithium Ion Batteries Containing High Potential Cathode (고전압 리튬이차전지를 위한 LiNi0.5Mn1.5O4 양극용 전해질로써 상온 이온성 액체 전해질의 불순물 효과에 관한 연구)

  • Kim, Jiyong;Tron, Artur V.;Yim, Taeeun;Mun, Junyoung
    • Journal of the Korean Electrochemical Society
    • /
    • v.18 no.2
    • /
    • pp.51-57
    • /
    • 2015
  • We report the effect of the impurities including water and bromide in the propylmethylpyrrolidinium bis(trifluoromethanesulfonyl)imide (PMPyr-TFSI) on the electrochemical performance of lithium ion batteries. The several kinds of PMPyr-TFSI electrolytes with different amount of impurities are applied as the electrolyte to the cell with the high potential electrode, $LiNi_{0.5}Mn_{1.5}O_4$ spinel. It is found that the impurities in the electrolytes cause the detrimental effect on the cell performance by tracing the cycleability, voltage profile and Coulombic efficiency. Especially, the polarization and Coulombic efficiency go to worse by both impurities of water and bromide, but the cycleability was not highly influenced by bromide impurity unlike the water impurity.

Synthesis of Li4/3Mn5/3O4 by Sol-Gel Process and its Electrochemical Properties (졸-겔법에 의한 Li4/3Mn5/3O4의 합성 및 전기화학적 특성)

  • Lee, Jin-Sik;Lee, Chul-Tae
    • Applied Chemistry for Engineering
    • /
    • v.10 no.1
    • /
    • pp.80-84
    • /
    • 1999
  • $Li_{4/3}Mn_{5/3}O_4$ having a defect structure was prepared by sol-gel process using lithium acetate and manganese acetate as starting materials, and their electrode characteristics in the lithium secondary battery was investigated. The reaction mole ratio was determined as $AA/Mn(OAc)_2$ of 0.2 and $NH_4OH/Mn(OAc)_2$ to $H_2O/Mn(OAc)_2$ of 0.4. The product was obtained through heat treatment at $350^{\circ}C$ for 12hrs after 1'st heat treatment at $150^{\circ}C$ of xerogel under oxygen atmosphere. When the charge and discharge cycles were performed between 2.0 V and 3.2 V, $Li/Li_{4/3}Mn_{5/3}O_4$ cell showed the dicharge capacity of 84.23 mAh/g and the good cycleability was obtained in the plateau region.

  • PDF

Synthesis and electrochemical properties of layered $Li[Ni_xCo_{1-2x}Mn_x]O_2$ materials for lithium secondary batteries prepared by mechanical alloying (기계적 합금법을 이용한 리튬 2차 전지용 층상 양극물질 $Li[Ni_xCo_{1-2x}Mn_x]O_2$ 의 합성 및 전기화학적 특성에 관한 연구)

  • 박상호;신선식;선양국
    • Proceedings of the Korea Crystallographic Association Conference
    • /
    • 2002.11a
    • /
    • pp.16-16
    • /
    • 2002
  • The presently commercialized lithium-ion batteries use layer structured LiCoO₂ cathodes. Because of the high cost and toxicity of cobalt, an intensive search for new cathode materials has been underway in recent years. Recently, a concept of a one-to-one solid state mixture of LiNO₂ and LiMnO₂, i.e., Li[Ni/sub 0.5/Mn/sub 0.5/]O₂, was adopted by Ohzuku and Makimura to overcome the disadvantage of LiNiO₂ and LiMnO₂. Li[Ni/sub 0.5/Mn/sub 0.5/]O₂ has the -NaFeO₂ structure, which is characteristic of the layered LiCoO₂ and LiNiO₂ structures and shows excellent cycleability with no indication of spinel formation during electrochemical cycling. Layered Li[Ni/sub x/Co/sub 1-2x/Mn/sub x/]O₂ (x = 0.5 and 0.475) materials with high homogeneity and crystallinity were synthesized using a mechanical alloying method. The Li[Ni/sub 0.475/Co/sub 0.05/Mn/sub 0.475/]O₂ electrode delivers a high discharge capacity of 187 mAh/g between 2.8 and 4.6 V at a high current density of 0.3 mA/㎠(30 mA/g) with excellent cycleability. The charge/discharge and differential capacity vs. voltage studies of the Li[Ni/sub x/Co/sub 1-2x/Mn/sub x/]O₂ (x = 0.5 and 0.475) materials showed only one redox peak up to 50 cycles, which indicates that structural phase transitions are not occurred during electrochemical cycling. The magnitude of the diffusion coefficients of lithium ions for Li[Ni/sub x/Co/sub 1-2x/Mn/sub x/]O₂(x = 0.5 and 0.475) are around 10/sup -9/ ㎠/s measured by the galvanostatic intermittent titration technique (GITT).

  • PDF

Synthesis and Characterizations of Mn1+XCo2-XO4 Solid Solution Catalysts for Highly Efficient Li/Air Secondary Battery (고효율의 리튬/공기 이차전지 공기전극용 Mn1+XCo2-XO4 고용체 촉매 합성 및 분석)

  • Park, Inyeong;Jang, Jaeyong;Lim, Dongwook;Kim, Taewoo;Shim, Sang Eun;Park, Seok Hoon;Baeck, Sung-Hyeon
    • Journal of the Korean Electrochemical Society
    • /
    • v.18 no.4
    • /
    • pp.137-142
    • /
    • 2015
  • $Mn_{1+X}Co_{2-X}O_4$ solid solutions with various Mn/Co ratios were synthesized by a combustion method, and used as cathode catalysts for lithium/air secondary battery. Their electrochemical and physicochemical properties were investigated. The morphology was examined by transmission electron microscopy (TEM), and the crystallinity was confirmed by X-ray diffraction (XRD) analyses. For the measurement of electrochemical properties, charge and discharge measurements were carried out at a constant current density of $0.2mA/cm^2$, monitoring the voltage change. Electrochemical impedance spectroscopy (EIS) analyses were also employed to examine the change in charge transfer resistance during charge-discharge process. $Mn_{1+X}Co_{2-X}O_4$ solid solutions showed enhanced cycleability as a cathode of Li/air secondary battery, and the performance was found to be strongly dependent on Mn/Co ratio. Among synthesized catalysts, $Mn_{1.5}Co_{1.5}O_4$ exhibited the best performance and cycleability, due to high charge transfer rate.

Enhancement on the Charge-discharge Property of Carbon Anode by the Addition of Metal Oxides in Li-ion Secondary Batteries (금속산화물 첨가방법에 의한 리튬이차전지 부극재료의 충방전 특성 개선)

  • 김정식
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.11
    • /
    • pp.1085-1089
    • /
    • 2003
  • In the present study effects of SnO$_2$-impregnation on the cell performance of Mesocarbon Microbeads (MCMB) electrode in the Li-ion battery have been investigated. Sn element was impreganted into MCMB powders by the chemical titration, and then post annealed at 250$^{\circ}C$ for 1 h in ambient atmosphere to be transformed as tin-oxide. From the measurement for the cell performance with the half cell in which the SnO$_2$-impregnated MCMB was used as an anode, the SnO$_2$-impregnated MCMB showed higher charge/discharge capacities, higher reversible specific charge capacity and better cycleability than a raw MCMB. As the amount of impregnated SnO$_2$ increased, both reversible and irreversible capacities increased.

Development of Thin Film Electrode by Thermal CVD and Its Anode Characteristics for Lithium Battery (Thermal CVD법을 이용한 박막전극의 개발 및 리튬이차전지의 음극특성)

  • Lee, Young-Ho;Kim, Seong-Il;Doh, Chil-Hoon;Jin, Bong-Soo;Min, Bok-Ki;Kim, Hyun-Soo;Moon, Seong-In;Yun, Mun-Soo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.378-379
    • /
    • 2006
  • The carbon thin film was developed by the CVD method using the carbon source of toluene with the stream of argon gas at $800{\sim}1100^{\circ}C$ for 1 hour. Developed carbon thin films have the material loading of 0.27 mg($800^{\circ}C$), 0.80 mg($900^{\circ}C$), 2.3 mg($1000^{\circ}C$), and 2.9 mg($1100^{\circ}C$) for the disk of 15 mm diameter on single side. The characteristics of carbon thin film as the anode of thin film battery were evaluated using Li|C coin cell. Li|C($1100^{\circ}C$) coin cell has the first specific discharge and charge capacity of 953 mAh/g and 374 mAh/g, respectively, resulting the first Ah efficiency of 39.3 %. Capacity retention of the 5th cycle was 93.2 % indicating good cycleability. The carbon thin film prepared by CVD shows good specific capacity and cycleability, but low Ah efficiency.

  • PDF