• Title/Summary/Keyword: cutting tool feed system

Search Result 109, Processing Time 0.021 seconds

A study on the Development of Micro Hole Drilling Machine and its Mechanism (미소경 드릴링 머신의 개발과 절삭현상의 연구)

  • Paik, In-Hwan;Chung, Woo-Seop
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.1
    • /
    • pp.22-28
    • /
    • 1995
  • Micro Drills have found ever wider application. However micro drilling is a machining to integrate the difficult machinablities such as tool stiffness, position control and revolution accuracy, and is known to cost and time consuming. So, this study aimed to practice ultraminiature drilling(0.05 .phi. ) wiht simple component, if possible. System is developed as the three modules : feed drives, spindle and monitoring part. The dynamics of measured current signals from the spindle of Micro Hole Drilling machine are investigated to establish the criteria of stepfeed mechanism. Cutting experiments identify the relationship of spindle rpm, feed rate and tool life. The smaller drill diameter is, the more suitable cutting condition have to be selected because of chip packing.

  • PDF

5-axis Machining of Impellers using Geometric Shape Information and a Vector Net (기하학적 형상정보와 벡터망을 이용한 임펠러의 5축가공)

  • Hwang, Jong-Dae;Yun, Il-Woo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.3
    • /
    • pp.63-70
    • /
    • 2020
  • Two rotational motions of the 5-axis machine tool maximize the degree of freedom of the tool axis vector, which improves tool accessibility; however, this lowers feed speed and rigidity, which impairs machining stability. In addition, cutting efficiency is lowered when compared with a flat end mill because typically, the ball-end mill is used when machining by rotational motion. This study increased cutting efficiency by using a corner radius flat end mill during impeller roughing. Furthermore, we proposed a fixed controlled machining of the rotary motion using geometric shape information to improve the feed speed and machining stability. Finally, we proposed a finishing tool path generation method using a vector net to increase the convenience and practicality of tool path generation. To verify its effectiveness, we compared the machining time, shape accuracy, and surface quality of the proposed method and an existing dedicated module.

Micro/Meso Cutting with Micro Turning Lathe (Micro 선반을 이용한 Micro/Meso 절삭에 관한 연구)

  • 고태조;김희술;배영호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.1025-1028
    • /
    • 2002
  • In this paper, a micro-turning lathe is introduced for micro machining of aluminum rod. To give feed motion, stepwise motion[2] actuators are used instead of the conventional inchworm mechanism. These are consisted of two Piezoelectric ceramics; one is for feeding the slider, and the other is for clamping the slider in the guide way of the body. The guide is V-form. The linearity and positional accuracy of the actuators is good enough far high precision motion. Since the system is more compact than the conventional system using three Piezoelectric ceramics, it is applicable for the micro-machine or MEMS unit. To fabricate the lathe, a small spindle unit with ball bearings of diameter of 10 millimeter is built-up on the top the slider. The motion is feed backed with miniaturized linear encoder attached each axis slider. The diamond tool bite is used for cutting tool. The machining is tried to make small diameter rod. The possible diameter that can be machined in this machine is presented as well as chip formation, surface roughness, and machinability.

  • PDF

A study on the Effective Cutting Conditions of Cage Motor Rotor(2) (농형회전자의 유효절삭조건에 관한 연구(2))

  • 김희남
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1995.10a
    • /
    • pp.30-36
    • /
    • 1995
  • This paper proposed on the effective cutting conditions of cage motor rotor by turning. If you want to introduce automatic manufacturing system into the cutting process of cage motor rotor, the selections of effective cutting conditions are necessary. The cutting process of cage motor rotor requires the precision and the out of roundness of cage motor rotor. The surface roughness of cutting face. it is very important factor with effect on the magnetic flux density of cage motor rotor. The purpose of this study is to find out the effects of cutting condition. upon adapting this results, we will improve the production rate in the cutting process of cage motor rotor. As a result, the selection of cutting conditions are important factors to production rate. And these are chosen by the investigations of cutting characters and surface roughness. The experimental result, showed that the increase of cutting speed caused the decrease of cutting force and the high surface integrity. The increase of feed rate and increase of depth of cut caused the increase of cutting force and surface roughness. Thus, the effective cutting conditions of cage motor rotor by turing are cutting speed 291m/min, feed rate 0.10mm/rev, depth of cut 0.05mm.

  • PDF

Analysis of the Characteristics of the Feed motor Current for the Estimation of the Cutting Force in General Cutting Environment (일반적 상황에서 2차원 절삭력 추정을 위한 이송모터 전류의 거동분석)

  • Jeong, Young-Hun;Yun, Seong-Hyun;Cho, Dong-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.4
    • /
    • pp.93-100
    • /
    • 2002
  • The current from the feed motor of a machine tool contains substantial information about the machining state. There have been many researches that investigated the current as a measure for the cutting farces. However it has been reported that this indirect measurement of the cutting farces from the feed motor current is only feasible in low frequency. In this research, it was presented that the bandwidth of the current monitoring can be expanded to 130 Hz. And the unusual behavior of the current was examined in this bandwidth. The cross-feed directional cutting force influences the machined surface of the workpiece, which makes it necessary to estimate this force to control the roughness of the machined sulfate. The current exists in the stationary feed motor, and it can give the useful information on the quality of the machined surface. But the unpredictable behavior of the current prevents applying the current to prediction of the cutting state. Empirical approach was conducted to resolve the problem. As a result, the current was shown to be related to the accumulation of the accumulation of the infinitesimal rotation of the motor. rotation of the motor. Subsequently the relationship between the current and the cutting force was identified.

High Speed Tool Feed System by the Mechanism of Ball Screw and Servo Motor (볼 나사와 서보모터 메커니즘에 의한 고속 TOOL 이송장치)

  • 김성식;김경석
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.11
    • /
    • pp.76-82
    • /
    • 1998
  • In this study, the Ball screw and Servo motor Mechanism is considered as a High Speed Tool Feed System for the machining of a piston of a reciprocating engine. For the machining of a piston, that shapes oval, high speed servo mechanism is needed as a positioning of a cutting tool, and the stroke of tool is 0.1 mm ~ 1 mm. Ball screw and servo motor Mechanism is available very much because this mechanism is used widely in general machine. This Mechanism has been designed with the use of the decrease in mass and partial wear of the ball screw for high speed positioning of tool. Also the periodic learning control method with the inverse transfer function compensation has been applied to the positioning control for the high accuracy positioning of tool. These applications lead the achievement of the machining of a piston with an accuracy of 5${\mu}{\textrm}{m}$ at 2500 rpm in CNC turning.

  • PDF

ADL Milling Characteristics for the Analysis of Cutting Force of Titanium Machining (티타늄 가공에서 절삭력 분석을 위한 ADL 밀링 가공특성)

  • Han, Jeong Sik;Jung, Jong Yun
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.45 no.3
    • /
    • pp.104-114
    • /
    • 2022
  • The purpose of using coolant in machining is both to increase a tool life and also to prevent product deformation and thus, stabilize the surface quality by lubricating and cooling the tool and the machining surface. However, a very small amount of cutting mist should be used because chlorine-based extreme pressure additives are used to generate environmental pollutants in the production process and cause occupational diseases of workers. In this study, medical titanium alloy (Ti-6Al-7Nb) was subjected to a processing experiment by selecting factors and levels affecting cutting power in the processing of the Aerosol Dry Lubrication (ADL) method using vegetable oil. The machining shape was a slot to sufficiently reflect the effect of the cutting depth. As for the measurement of cutting force, the trend of cutting characteristics was identified through complete factor analysis. The factors affecting the cutting force of ADL slot processing were identified using the reaction surface analysis method, and the characteristics of the cutting force according to the change in factor level were analyzed. As the cutting speed increased, the cutting force decreased and then increased again. The cutting force continued to increase as the feed speed increased. The increase in the cutting depth increased the cutting force more significantly than the increase in the cutting speed and the feed speed. Through the reaction surface analysis method, the regression equation for predicting cutting force was identified, and the optimal processing conditions were proposed. The cutting force was predicted from the secondary regression equation and compared with the experimental value.

A Study on Optimum Cutting Conditions and Tool Life in Deep Hole Drilling for SM55C by BTA Drill (BTA드릴에 의한 SM55C의 심공가공시 최적절삭조건과 공구수명에 관한 연구)

  • 장성규;전언찬
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.9
    • /
    • pp.43-49
    • /
    • 1998
  • The deep hole drilling has an increasing demands because of its wide range applications and its good productivity. The BTA drills are capable of machining for having a large length to diameter ratio in single pass to higher degree of accuracy and surface finish. It's really necessary that the investigation for the deep hole drilling by the BTA drill because its required quality should be satisfied with single pass. This thesis deal with the experimental results obtained during single tube BTA system machining on SM55C steel for different machining conditions. The results of the investigation on the optimum cutting condition selecting and tool life reveals as follows. (1) The optimum cutting condition was cutting speed, V = 42 m/min and feed speed. F = 90 mm/min and the tool life was about 10 meters. (2) Surface roughness was $12\mum$ and the roundness was less using $16mum$single edge BTA drill in testing cutting condition.

  • PDF

Study on Optimized Machining of Duralumin using AFC (AFC를 이용한 두랄루민의 최적화 가공에 관한 연구)

  • Kang, Min-Seog
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.1
    • /
    • pp.49-55
    • /
    • 2020
  • Studies on the optimizations of machining processes use two different methods. The first is feed control in real-time by spindle load in a machine tool. The second is feed scheduling in NC code control by material removal rate using a CAD/CAM system. Each approach possesses its respective merits and issues compared to the other. That is, each method can be complementary to the other. The purpose of the study is to improve the productivity of the bulkhead, an aircraft Duralumin structure. In this paper, acceleration or deceleration of cutting tool by spindle load data is achieved using adaptive feed control macro programming in a machine tool.

A Study on the Linear Motor Control System (니리어모터 이송계 제어 특성분석에 관한 연구)

  • Yoo, Song-Min
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.04a
    • /
    • pp.466-471
    • /
    • 2003
  • In order to analyze linear motor driven feed system, preliminary studies have been conducted focusing on the performance evaluation of the system based on the various combination of control gain along with acceleration. Tentative simulation revealed that due to the complexity of control system reduced number of control condition is recommended. Actual machining process with conventional feed system using endmill tool was employed as a preliminary study. Several sensing methods including AE, acceleration sensors and tool dynamometer were used. Results revealed the consistency in AE and cutting resistance. There were inconsistent empirical results in accelerometer probably due to the insensitivity of the sensor signal with respect to the experimental system

  • PDF