• Title/Summary/Keyword: cutting test

Search Result 772, Processing Time 0.245 seconds

Development of Multi-purpose Marine Wastes Cleaning Systems for the Shallow Waters(PART II : System Development and Performance Evaluation) (천수용 다기능 해양폐기물 수거시스템 개발(PART II : 시스템 구성 및 성능시험))

  • Cho Yong-Jin;Moon Il-Sung;Shin Myung-Soo;Yu Jeong-Seok;Kang Chang-Gu
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.5 no.2
    • /
    • pp.62-67
    • /
    • 2002
  • This paper - following 'Development of multi-purpose marine waste cleaning systems for the shallow waters (Part I : preliminary conceptual design)'- describes on the system development and the sea trial performance evaluation(Cho[2003]). The multi-functional seabed waste collecting system and the towing hook system were developed. The maximum working depth of these systems are 15 and 100 meters, respectively(MOMAF[2001]). For the multi-purpose use to collect the marine waste, this system contains floating waste collecting device for the waste on seawater and remained waste collecting device for the waste on seabed, while steel wire cutting system is added for higher efficiency In order to evaluate the system performance, the prototype of multi-functional system was constructed and the sea trial test at shallow water were carried out. As a result, this system operated well with safe and without any interaction so that the developed systems are practicable and applicable.

  • PDF

PREDICTION OF RESIDUAL STRESS PROFILE IN SINGLE-SIDED BUTT WELD USING COMPLIANCE METHOD

  • Kim, Yooil;Jeon, Yu-Chul;Kang, Joong-Kyoo;Han, Yong-Sub
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.156-161
    • /
    • 2002
  • It depends on the joint configuration, dimensions and constraints on the joint whether the residual stress at the root of single-sided butt weld is tensile or not. Therefore, recommendation is generally made that high R ratio should be used in the fatigue test of this type of joint in order to prevent excessively long life caused by compressive residual stress. in this research, the residual stress profile in butt weld joint was obtained through compliance method, using successive extension of a slot and measurement of the variation of strain during the slot extension. The residual stress profile was firstly assumed to be the linear summation of Legendre polynomials up to 9th order excluding 0th and 1st order. Strain variation on the surface was measured while the slot was being extended by cutting to find out the 8 unknown coefficients of each polynomial tenn. The cut was made by the electric discharge machine. It was concluded that the residual stress near the surface stayed positive, however, it turned into the negative value as soon as it passed through 2 or 3 mm depth. Several fatigue tests were also carried out under zero stress ratio. Test results showed that fatigue life coincides well with the design cuive of butt joint in British Standards, which supports that it is tensile residual stress that exists near the weld root.

  • PDF

COMPARATIVE STUDY OF PANORAMIC MANDIBULAR PARAMETERS IN POSTMENOPAUSAL OSTEOPOROTIC WOMEN (폐경후 골다공증 여성환자에 있어서 파노라마상 하악골 지표에 관한 비교연구)

  • Kim, Cheol-Hun;Shin, Sang-Hun;Yang, Dong-Kyu
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.26 no.5
    • /
    • pp.519-526
    • /
    • 2000
  • Osteoporosis has recently been recognized as a major health problem in the elderly population. The disorder is manifested as a loss of bone mass accompanied by structural alteration of bone and increased incidence of fracture. Mandible also may be affected. So, I evaluated panoramic views of 66 postmenopausal women for finding the possibility of useful diagnostic mandibular parmeters of osteoporosis. To know the correlationship between skeleton and mandible, the average of the bone mineral density of lumbar from 2nd to 4th by the dual energy X-ray absorptiometry(DEXA, LUNAR DPZ. USA), and age and mandibular parameters, that is, the number of residual teeth, alveolar ridge resorption ratio, panoramic mandibular index (PMI), mandibular cortical width (MCW), angular cortical thickness (ACT), ramus cortical thickness (RCT), morphology of mandibular inferior cortical (MIC) were compared. And I divided the all tested women to the osteoporotic group and non-osteoporotic group by the use of T-score -2.0, which was derived from skeletal bone mineral density (BMD). To find the correlationship of the each group with mandibular parameters, t-test and discriminant analysis were done. The results of the t-test were that all parameters were highly related with 2 groups (p<0.05). Especially ACT, MIC, age have had even higher correlationship than others (p<0.001). The results of the discriminant analysis by the use of these ACT, MIC and age were that the discriminant function was Z = -2.973+(-1.447)$\times$(ACT)+1.131$\times$(MIC score)+(0.052)$\times$(age), the cutting score was 0.257 and the classification accuracy was 84.8%. Therefore I suggest that the consideration of the angular cortical thickness (ACT), the age of patient and the morphology of mandibular inferior cortical(MIC) may help find the osteoporosis.

  • PDF

Hazard Analysis of Commissary School Foodservice Operations (공동조리 학교급식의 미생물적 품질보증을 위한 위험요인 분석)

  • 곽동경;남순란;김정리;박신정;서소영;김성희;최은희
    • Korean journal of food and cookery science
    • /
    • v.11 no.3
    • /
    • pp.249-260
    • /
    • 1995
  • 6 Central commissary and 2 conventional school foodservice operations were assessed in terms of time-temperature relationship and microbiological quality, and monitoring control methods were identified through hazard analysis during the phases of prodution and distribution. 2 conventional schools from Seoul and 6 commissary schools from Kyungkido were participated in the survey. Meals produced in central commissary were distributed to satellites, therefore delivery practices of foods were identified as critical. Microbiological test results for commissary and conventional schools revealed that microbiological quality of foods was mainly related to time-temperature management, types of food, and equipment sanitation not to the foodservice system used. Time-temperature profiles at temperature danger zone (7.2-60$^{\circ}C$) observed were to be related to the following sanitary practices: cooked vegetables were held at temperature danger zone for relatively longer delayed time (15-38$^{\circ}C$: 15-226 min, 7-60$^{\circ}C$: 75-226 min), and same results were observed for deep-fat fried cutlets (15-38$^{\circ}C$: 15-151 min, 7-60$^{\circ}C$: 33-151 min). Menu items with various ingredients and frequent contacts with hands and equipments during the production flow were held at temperature danger zone for longer delaying time than other menu items with brief prodution stages. Based on hazard analysis critical control points, microbiological quality was collectively affected by time-temperature relationships, equipment sanitation, proper cooking methods, and sanitary management competencies of dietitians. Microbiological test results of working equipments and surface of dishes and trays showed that immediate action should be taken. Cutting boards used in central kitchen were also showed similar results of potential dager of cross-contamination. Effective sanitary control methods were urgently needed.

  • PDF

Effects of Main Shaft Velocity on Turbidity and Quality of White Rice in a Rice Processing System

  • Cho, Byeong-Hyo;Kang, Tae-Hwan;Won, Jin-Ho;Kang, Shin-Hyeong;Lee, Hee-Sook;Han, Chung-Su
    • Journal of Biosystems Engineering
    • /
    • v.42 no.1
    • /
    • pp.69-74
    • /
    • 2017
  • Purpose: The purpose of this study is to analyze turbidity and quality characteristics of white rice as a function of main shaft blast velocity and to verify the optimum processing conditions in the cutting type white rice processing system (CTWRPS). Methods: Sindongjin, one of the rice varieties, which used to be produced in Gimje-si, Jeollabuk-do, in 2015, was used as the experimental material. Turbidity and quality characteristics of white rice were measured at three different main shaft blast velocities: 25, 30, and 35 m/s. The amount of test material used for a single experiment was 20 kg, and after processing, whiteness was found to be $42.5{\pm}0.5$, following which, turbidity and quality characteristics were measured. Results: Turbidity decreased with increase in the shaft blast velocity, and as a result, was lowest at 35 m/s of shaft blast velocity among all the other experiment velocities. The trend of cracked rice ratios was similar to the turbidity. Broken rice ratio turned out to be less than 2.0% in all the test conditions. In the first stage of processing, the processing pressure decreased as the main shaft blast velocity increased. Additionally, in the second stage of processing, the processing pressure was at its lowest value at the main shaft blast velocity of 35 m/s. Energy consumption, too, decreased as the main shaft blast velocity was increased. Conclusions: From the above results, it is concluded that the main shaft blast velocity of 35 m/s is best for reducing turbidity and producing high quality rice in a CTWRPS.

Design and Performance Test of Locking Curved-Nut (풀림방지 Curved-Nut 설계 및 성능 시험)

  • Cha, Min Cheol;Kang, Ho Sung;Kim, Do Yeop;Lee, Suk Yong;Jeong, Hui Jong;Lee, Eung Suk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.3
    • /
    • pp.199-204
    • /
    • 2017
  • Many types of locking nut are commercializing in the various industries where has heavy vibration. Because nut's loosing causes a serious accident. But the most locking nuts are too expensive as the complicate manufacturing process. In this study, we design the new type of locking nut, "Curved-Nut" that is relatively simple making process. We study a relation between the elastic energy and the nut loosing mechanism. So it is analysed, the elastic energy of Curved-Nut comparing with the locking test. The Curved-Nut was manufactured on the commercial nut using a milling tool with horizontal cutting, one or two time under the nut. As the result, the more elastic energy the more prevent the loosing of the nut. We verified the performance of the loosing nut using the vibration testing equipment (NAS3350).

Characteristics of Brazed Joint of Sintered Bronze/steel Using Ag-Cu-Zn Type Filler Materials (Ag-Cu-Zn-Cd 계 용가재를 이용한 Bronze 소결체/강의 브레이징 접합부 특성 평가)

  • 이정훈;이창희
    • Journal of Welding and Joining
    • /
    • v.17 no.3
    • /
    • pp.79-89
    • /
    • 1999
  • The study was carried out to examine in more detail metallurgical and mechanical properties of brazed joints of diamond cutting wheel. In this work, shank(mild steel) and sintered bronze-base tips were brazed with three different filler materials(W-40, BAgl and BAg3S). The machine used in this work was a high frequency induction brazing equipment. The joint thickness, porosities and microstructure of brazed joints with brazing variables(brazing temperature, holding time) were evaluated with OLM, SEM, EDS and XRD. Bending(torque) test was also performed to evaluate strength of brazed joints. Further wetting test was performed in a vacuum furnace in order to evaluate the wettability of filler metals on base metals9shank and tips). The brazing temperature had a strong influence on the joint strength and the optimum brazing temperature range was about $700~850^{\circ}C$ for the bronze/steel combinations. The strength of the brazed joint was found to be influenced by the three factors : degree of reaction region, porosity content, joint thickness. The reaction region was formed in the bronze-base tip adjacent to the joint. The reaction region resulted in a bad influence on the strength due to the formation of Cu5.6Sn, CuZn4, $\beta(CuZn)$ and CdAg, etc. Porosities increased as brazing variables(brazing temperature, holding time) increased, and the brazed joints with porosities of less than about 3-5% had an optimum strength for the bronze-base tip.

  • PDF

Energy analysis-based core drilling method for the prediction of rock uniaxial compressive strength

  • Qi, Wang;Shuo, Xu;Ke, Gao Hong;Peng, Zhang;Bei, Jiang;Hong, Liu Bo
    • Geomechanics and Engineering
    • /
    • v.23 no.1
    • /
    • pp.61-69
    • /
    • 2020
  • The uniaxial compressive strength (UCS) of rock is a basic parameter in underground engineering design. The disadvantages of this commonly employed laboratory testing method are untimely testing, difficulty in performing core testing of broken rock mass and long and complicated onsite testing processes. Therefore, the development of a fast and simple in situ rock UCS testing method for field use is urgent. In this study, a multi-function digital rock drilling and testing system and a digital core bit dedicated to the system are independently developed and employed in digital drilling tests on rock specimens with different strengths. The energy analysis is performed during rock cutting to estimate the energy consumed by the drill bit to remove a unit volume of rock. Two quantitative relationship models of energy analysis-based core drilling parameters (ECD) and rock UCS (ECD-UCS models) are established in this manuscript by the methods of regression analysis and support vector machine (SVM). The predictive abilities of the two models are comparatively analysed. The results show that the mean value of relative difference between the predicted rock UCS values and the UCS values measured by the laboratory uniaxial compression test in the prediction set are 3.76 MPa and 4.30 MPa, respectively, and the standard deviations are 2.08 MPa and 4.14 MPa, respectively. The regression analysis-based ECD-UCS model has a more stable predictive ability. The energy analysis-based rock drilling method for the prediction of UCS is proposed. This method realized the quick and convenient in situ test of rock UCS.

Development of Constitutive Equation for Soils Under Cyclic Loading Conditions (反復荷重을 받는 흙의 構成關係式 開發)

  • Jang, Byeong-Uk;Song, Chang-Seop
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.34 no.1
    • /
    • pp.41-48
    • /
    • 1992
  • Various soil behaviors usually occurring in the geotechnical problems, such as, cutting and embankments, stability of slope, seepage, consolidations, shearing failures and liquefaction, should be predicted and analyzed in any way. An approach of these predictions may be followed by the development of the constitutive equations as first and subsequently solved by numerical methods. The purpose of this paper is develop the constitutive equation of sands uder monotonic or cyclic loadings. The constitutive equation which is based on elasto-plastic theory, modified anisotropic consolidated stress parameter by Sekiguchi et al and Pender's theory is derived. And the equation is included a new stress parameter, hardening function, Bauschinger's effects and Pender's theory. The model is later evaluated and confirmed the validity by the test data of Ottawa sand, Banwol sand Hongseong sand. The following conclustions may be drawn: 1. The consititutive equation which is based on elasto-plastic theory, modified anisotropic consolidated stress parpameter by Sekiguchi et al and Pender's theory is derived. The equation in included a new stress parameter, hardening function, Bauschinger's effect and Pender's theory. 2. For Ottawa sand, the result of the constitutive equation shows a better agreement than that of Oka et al. The result of axial strain agrees well with the tested data. However, the result of horizontal strain is little bit off for the cyclic loadings or large stress. It is thought that the deviation may be improved by considering Poisson's ratio and precise measurement of shear modulus. 3. Banwol sand is used for the strain and stress tests with different relative densitites and confining pressures. The predeicted result shows a good agreement with the tested data because the required material parameters were directly measurd and determined form this laboratory. 4. For Hongseong sand, the tests under same amplitude of cyclic deviatoric stress shows a similar result with the tested data in absolute strain. It shows the acute shape of turning point because the sine wave of input is used in the test but the serrated wave in prediction.

  • PDF

Change in surface of primary tooth using different type of toothpaste (치약 종류에 따른 유치의 표면 변화)

  • Choi, Jung-Ok;Nam, Seoul-Hee
    • Journal of Korean society of Dental Hygiene
    • /
    • v.14 no.2
    • /
    • pp.281-286
    • /
    • 2014
  • Objectives : The aim of this study is to evaluate the surface changes of enamel specimen, tooth structure by toothpastes in child and adult. Methods : Experimental teeth were collected from extracted human primary teeth. 120 enamel specimens were prepared by cutting the teeth into $2{\times}3{\times}2mm$ blocks using diamond saw and the specimens were assigned to 3 groups. Group 1 was used as control with no treatment. Group 2 was treated with child toothpaste and Group 3 was treated with adult toothpaste on primary enamel surface for 3 minutes daily over 4 weeks. The specimens were immersed into individual container having artificial saliva and the artificial saliva was changed every day. The electron probe micro analyzer(EPMA) provided weight percent(wt%) of calcium(Ca) and phosphorous(P) on enamel surface. The morphology was analyzed by scanning electron microscopy(SEM). Data were analyzed by one-way analysis of variance(ANOVA) and Tukey's test post-hoc test using SPSS(Version 20, SPSS Inc., Chicago, USA). Level of significance was set at 0.05. Results : The surface changes of the primary teeth revealed a significant difference during 4 weeks. Calcium(Ca) and phosphorous(P) levels were found the weight percent difference and a rough enamel surface was seen on SEM after adult toothpaste application. Conclusions : The changes in Ca and P and the morphological surface were affected by the primary tooth treated with adult toothpaste. Enamel surface showed significant differences during 4 weeks.