• Title/Summary/Keyword: cutting mechanism

Search Result 360, Processing Time 0.024 seconds

An Experimental Investigation of Particle Impingement Erosion in Hydraulic Systems (유압시스템의 입자 침해 침식의 실험적 고찰)

  • 이재천;김성훈
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.2
    • /
    • pp.117-122
    • /
    • 2002
  • This study assesses the wear process of particle impingement erosion which is a major source of erosion among fluid power components. First, Bitter's theory was modified to simplify engineering calculations. Second, actual experiments were conducted to validate the modified equation. And the effect of concentration and size distribution of impinging particles was tested. Little deviation from the prediction of the modified equation was observed. To develop complete analytical approach to the erosion mechanism, further experimental data are required to establish a correlation with other engineering parameters.

Effects of Substrate Materials on the Porosity Formation of Spary Cast Deposit (분사주조 성형체의 기공형성에 대한 기판재료의 영향)

  • Kim, Dong-Gyu
    • Journal of Korea Foundry Society
    • /
    • v.13 no.5
    • /
    • pp.476-483
    • /
    • 1993
  • The influence of substrate materials on the degree of basal porosity during spray casting process has been investigated. Different conditions of droplet spreading on the substrate were induced by varying the substrate material. Flat sections of cast iron and aluminum have been spray deposited via spray casting process onto an aluminum substrate, a low carbon steel substrate, and an alumina based refractory substrate. Results for cast iron and aluminum sprayed onto the aluminum substrate showed significant improvements in the surface condition and degree of basal porosity with evidence of substrate deformation that round pits ranging from $5{\mu}m$ to $20{\mu}m$ in diameter are distributed on the surface of aluminum substrate. The lowest level of porosity was developed in alumina based refractory material. Several mechanisms for porosity formation were discussed with droplet impact pressure and droplet spreading. Adopting a spray cutting mechanism for removing the periphery of spray cone, porosity level was remarkably decreased.

  • PDF

Tool Alignment and Machining Accuracy in Micro End Milling (마이크로 머시닝에서의 공구 정렬과 가공정밀도)

  • An, Ju Eun;Lee, Sung Ho;Kwak, Jae Seob
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.25 no.2
    • /
    • pp.143-148
    • /
    • 2016
  • A micro end mill is one of the precise tools used in machining ultra-precision products such as microchannel and micropatterned mold. To achieve the required precision of these products, several studies investigated the cutting force, burr formation, and burr generation mechanism of micro end mills; however, there are few studies on the alignment of micro tools, which is the foundation of machining. Hence, in this investigation, relation expressions were derived to determine the relation between the misalignment parameters and the machining accuracy. At the same time, the effect of the machining parameters was analyzed using a multiple linear regression analysis and the analysis of variance. The results indicate that the tilting angle of a micro tool has more influence on the machining accuracy than other parameters.

An Experimental Investigation of Particle Impingement Erosion in Hydraulic System (유압시스템의 입자 침해 침식의 실험적 고찰)

  • 이재천
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.06a
    • /
    • pp.15-21
    • /
    • 2001
  • This study assesses the wear process of particle impingement erosion which is a major source of erosion among fluid power components. First, Bitter's theory was modified to simplify engineering calculations. Second, actual experiments were conducted to validate the modified equation. And the effect of concentration and size distribution of impinging particles was tested. Little deviation from the prediction of the modified equation was observed. To develop an analytical approach to the erosion mechanism, further experimental data are required to establish a correlation with other engineering parameters.

  • PDF

The Identification of drilling chatter on the machining accuracy (Drill가공의 형상정도에 의한 Chatter발생 규명)

  • Park, Jong-Kweon;Seong, Hwal-Gyeong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.5
    • /
    • pp.18-24
    • /
    • 1995
  • Drilling chatter is regenerative type self-excited vibration and can be predicted by the measurments of the dynamic compliance between tool and workpiece based on structural dynamics and cutting dynamics. This paper describes the theoretical prediction about drilling chatter and the mechanism of the formation of multi-coner shape in holes by drilling chatter. By the experiments and theoretical study, it is found that the odd number of multi-coner shape is always generated by drilling chatter.

  • PDF

A Study on the Microcutting for Configuration of Tools using Molecular Dynamics (분자동역학을 이용한 공구형상에 따른 미소절삭현상에 관한 연구)

  • Moon, Chan-Hong;Kim, Jeong-Du
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.4
    • /
    • pp.135-142
    • /
    • 1995
  • Recently, the analysis of microcutting with submicrometer depth of cut is tried to get a more high quality surface product, but to get a valuable result another method instead of conventional finite element method must be considered because finite element method is impossible for a very small focused region and mesh size. As the alternative method, Molecular Dynamics or Statics is suggested and accepted in the field of microcutting, indentation and crack propagation. In this paper using Molecular Dynamics simulation, the phenomena of microcutting with subnanometer chip thickness is studied and the cutting mechanism for tool edge configuration is evaluated. As the result of simulation the atomistic chip formation is achieved.

  • PDF

Tool-Setup Monitoring of High Speed Precision Machining Tool

  • Park, Kyoung-Taik;Shin, Young-Jae;Kang, Byung-Soo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.956-959
    • /
    • 2004
  • Recently the monitoring system of tool setting in high speed precision machining center is required for manufacturing products that have highly complex and small shape, high precision and high function. It is very important to reduce time to setup tool in order to improve the machining precision and the productivity and to protect the breakage of cutting tool as the shape of product is smaller and more complex. Generally, the combination of errors that geometrical clamping error of fixing tool at the spindle of machining tool and the asynchronized error of driving mechanism causes that the run-out of tool reaches to 3$^{\sim}$20 times of the thickness of cutting chip. And also the run-out is occurred by the misalignment between axis of tool shank and axis of spindle and spindle bearing in high speed rotation. Generally, high speed machining is considered when the rotating speed is more than 8,000 rpm. At that time, the life time of tool is reduced to about 50% and the roughness of machining surface is worse as the run-out is increased to 10 micron. The life time of tool could be increased by making monitoring of tool-setup easy, quick and precise in high speed machining tool. This means the consumption of tool is much more reduced. And also it reduces the manufacturing cost and increases the productivity by reducing the tool-setup time of operator. In this study, in order to establish the concept of tool-setup monitoring the measuring method of the geometrical error of tool system is studied when the spindle is stopped. And also the measuring method of run-out, dynamic error of tool system, is studied when the spindle is rotated in 8,000${\sim}$60,000 rpm. The dynamic phenomena of tool-setup are analyzed by implementing the monitoring system of rotating tool system and the non-contact measuring system of micro displacement in high speed.

  • PDF

A study on the havesting process and operating behaviour of working ships for farming laver (김 양식장 채취선의 운항거동과 수확조업에 관한 연구)

  • KIM, Ok-sam;MIN, Eun-bi;HWANG, Doo-jin
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.56 no.3
    • /
    • pp.223-229
    • /
    • 2020
  • We analyzed the cutting mechanism of laver harvesting machine in the sea area near Gooam Port in Goheung, Jeollanam-do, and investigated the change and efficiency of laver collecting operation in the working ship. The laver working ship slides uniformly from the bow to the upper part of the laver collecting machine on the deck and cuts the wet laver attached to the bottom of the net at the blade of the havesting machine. The laver farming net, which was loaded with laver turrets on the deck by gravity and collected primitives, consisted of a ship structure that led to the stern side and into the sea. The working ship operation is in harvesting process while driving in a S-shape that is separated by one space to efficiently collect the laver net. During laver working ship operation, the speed was 0.51 m/s in the access stage, 0.56 m/s in the havesting stage, and 0.52 m/s in the exit stage. Considering the cutting edge life and production efficiency of the laver harvesting machine, it is appropriate to harvest 1.15 to 1.26 kg/rpm by operating at a rotational speed of about 700 to 800 rpm rather than forcibly harvesting the product at high speed. On the deck of the working ship, 959.7 kg of starboard and 1048.7 kg of center were 964.7 kg of port side. Based on the starboard, 9.3% of the central part and 0.5% of the port side appeared. The reason for this was due to the difference in harvest time according to the turning direction of the working ship.

Tool-Setup Measurement Technology of High Speed Precision Machining Tool (고속 정밀 가공기의 공구셋업 측정기술)

  • 박경택;신영재;강병수
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1066-1069
    • /
    • 2004
  • Recently the monitoring system of tool setup in high speed precision machining tool is required for manufacturing products that have highly complex and small shape, high precision and high function. It is very important to reduce time to setup tool in order to improve the machining precision and productivity and to protect the breakage of cutting tool as the shape of product is smaller and more complex. Generally, the combination of errors that geometrical clamping error of fixing tool at the spindle of machining center and the asynchronized error of driving mechanism causes that the run-out of tool reaches to 3∼20 times of the thickness of cutting chip. And also the run-out is occurred by the misalignment between axis of tool shank and axis of spindle and spindle bearing in high speed rotation. Generally, high speed machining is considered when the rotating speed is more than 8,000 rpm. At that time, the life time of tool is reduced to about 50% and the roughness of machining surface is worse as the run-out is increased to 10 micron. The life time of tool could be increased by making monitoring of tool-setting easy, quick and precise in high speed machining center. This means the consumption of tool is much more reduced. And also it reduces the manufacturing cost and increases the productivity by reducing the tool-setup time of operator. In this study, in order to establish the concept of tool-setting monitoring the measuring method of the geometrical error of tool system is studied when the spindle is stopped. And also the measuring method of run-out, dynamic error of tool system, is studied when the spindle is rotated in 8,000 ∼ 60,000 rpm. The dynamic phenomena of tool-setup is analyzed by implementing the monitoring system of rotating tool system and the noncontact measuring system of micro displacement in high speed.

  • PDF

Coordinated supporting method of gob-side entry retaining in coal mines and a case study with hard roof

  • Liu, X.S.;Ning, J.G.;Tan, Y.L.;Xu, Q.;Fan, D.Y.
    • Geomechanics and Engineering
    • /
    • v.15 no.6
    • /
    • pp.1173-1182
    • /
    • 2018
  • The coal wall, gob-side backfill, and gangues in goaf, constitute the support system for Gob-side entry retaining (GER) in coal mines. Reasonably allocating and utilizing their bearing capacities are key scientific and technical issues for the safety and economic benefits of the GER technology. At first, a mechanical model of GER was established and a governing equation for coordinated bearing of the coal-backfill-gangue support system was derived to reveal the coordinated bearing mechanism. Then, considering the bearing characteristics of the coal wall, gob-side backfill and gangues in goaf, their quantitative design methods were proposed, respectively. Next, taking the No. 2201 haulage roadway serving the No. 7 coal seam in Jiangjiawan Mine, China, as an example, the design calculations showed that the strains of both the coal wall and gob-side backfill were larger than their allowable strains and the rotational angle of the lateral main roof was larger than its allowable rotational angle. Finally, flexible-rigid composite supporting technology and roof cutting technology were designed and used. In situ investigations showed that the deformation and failure of surrounding rocks were well controlled and both the coal wall and gob-side backfill remained stable. Taking the coal wall, gob-side backfill and gangues in goaf as a whole system, this research takes full consideration of their bearing properties and provides a quantitative basis for design of the support system.