International Journal of Computer Science & Network Security
/
제21권8호
/
pp.196-202
/
2021
DNA sequencing provides fundamental data in genomics, bioinformatics, biology and many other research areas. With the emergent evolution in DNA sequencing technology, a massive amount of genomic data is produced every day, mainly DNA sequences, craving for more storage and bandwidth. Unfortunately, managing, analyzing and specifically storing these large amounts of data become a major scientific challenge for bioinformatics. Those large volumes of data also require a fast transmission, effective storage, superior functionality and provision of quick access to any record. Data storage costs have a considerable proportion of total cost in the formation and analysis of DNA sequences. In particular, there is a need of highly control of disk storage capacity of DNA sequences but the standard compression techniques unsuccessful to compress these sequences. Several specialized techniques were introduced for this purpose. Therefore, to overcome all these above challenges, lossless compression techniques have become necessary. In this paper, it is described a new DNA compression mechanism of pattern matching extended Compression algorithm that read the input sequence as segments and find the matching pattern and store it in a permanent or temporary table based on number of bases. The remaining unmatched sequence is been converted into the binary form and then it is been grouped into binary bits i.e. of seven bits and gain these bits are been converted into an ASCII form. Finally, the proposed algorithm dynamically calculates the compression ratio. Thus the results show that pattern matching extended Compression algorithm outperforms cutting-edge compressors and proves its efficiency in terms of compression ratio regardless of the file size of the data.
Drilling is a crucial process that takes up a significant amount of weight during machining operations. In addition, drill tip-type tools and related operations have been developed for manufacturing industries to achieve economic efficiency. In this study, SM45C carbon steel, widely used for machine structures, was utilized as the working material after quenching and tempering. Insert-tip types of carbide tools, such as TiN and TiAlN, were used as tool materials. Drilling conditions such as the spindle revolution, feed rate, step of cut, and tool diameter were used to measure roughness, roundness, and straightness using the orthogonal array table statistical method. The surface roughness, roundness, and straightness characteristics based on the conditions were analyzed using ANOVA. The results showed that the spindle speed and feed rate were the main factors influencing carbide insert-tip drilling under the same conditions as the experimental conditions.
Presently, abrasive processing is on eof several methods for cutting and grinding brittle materials, and high quality in dimensional accuracy and surface roughness are often required as a structural components, therefore most of them has to be ground. In manufacturing of tungsten-carbide components, grinding by diamond wheel is usually adopted in order to provide configurational and dimensional accuracy to the components. The present study proposes the experi- mental research of optimum condition to the high quality surface grinding of the WC-Co material using diamond abrasive wheel in order to minimize the damage on the ground surface and to pursue the precise dimension by conventional grinding machine. Brief investigation is carried out to decrease the dressing is constant, theoretical grinding effect such as machining precision is changed according to the speed of workpiece. Accordingly, normal and tangential grinding forces, which are Fn, Ft were analyzed for the machining processes of WC-Co material to obtain optimum grinding conditions, 3-point bending test is carried out to check machining damage on the ground surface layer, which is one of sintered brittle materials.
KSII Transactions on Internet and Information Systems (TIIS)
/
제17권7호
/
pp.1794-1806
/
2023
This study presents a method for capturing photographs of users as input and converting them into 2D character animation sprites using a generative adversarial network-based artificial intelligence network. Traditionally, 2D character animations have been created by manually creating an entire sequence of sprite images, which incurs high development costs. To address this issue, this study proposes a technique that combines motion videos and sample 2D images. In the 2D sprite generation process that uses the proposed technique, a sequence of images is extracted from real-life images captured by the user, and these are combined with character images from within the game. Our research aims to leverage cutting-edge deep learning-based image manipulation techniques, such as the GAN-based motion transfer network (impersonator) and background noise removal (U2 -Net), to generate a sequence of animation sprites from a single image. The proposed technique enables the creation of diverse animations and motions just one image. By utilizing these advancements, we focus on enhancing productivity in the game and animation industry through improved efficiency and streamlined production processes. By employing state-of-the-art techniques, our research enables the generation of 2D sprite images with various motions, offering significant potential for boosting productivity and creativity in the industry.
The main idea of the framework is to seamlessly combine a reasonably accurate and fast surrogate model with the importance sampling strategy. Developing a surrogate model for predicting structures' dynamic responses is challenging because it involves high-dimensional inputs and outputs. For this purpose, a novel surrogate model based on cutting-edge deep learning architectures specialized for capturing temporal relationships within time-series data, namely Long-Short term memory layer and Transformer layer, is designed. After being properly trained, the surrogate model could be utilized in place of the finite element method to evaluate structures' responses without requiring any specialized software. On the other hand, the importance sampling is adopted to reduce the number of calculations required when computing the failure probability by drawing more relevant samples near critical areas. Thanks to the portability of the trained surrogate model, one can integrate the latter with the Importance sampling in a straightforward fashion, forming an efficient framework called TTIS, which represents double advantages: less number of calculations is needed, and the computational time of each calculation is significantly reduced. The proposed approach's applicability and efficiency are demonstrated through three examples with increasing complexity, involving a 1D beam, a 2D frame, and a 3D building structure. The results show that compared to the conventional Monte Carlo simulation, the proposed method can provide highly similar reliability results with a reduction of up to four orders of magnitudes in time complexity.
스마트홈 이전에 주목받았던 인텔리전스홈과 홈오토메이션은 첨단 기술들을 주택에 적용하는 데 초점을 맞추어 사용자들에게 불편성을 안겨주었고, 실질적인 효율성은 부족하여 대중화에 실패했다. 하지만, 현재 4차 산업 혁명과 더불어 빅데이터, 인공지능, 사물 인터넷과 관련된 기술들을 활용한 다양한 서비스가 증가하고 있으며, 다양한 기술들을 기반으로 가정 내에서 제품들을 조작 및 관리하며, 자동화하는 스마트홈 서비스 구축률이 점차 증가하고 있다. 본 논문에서는 이런 동향 추세에 맞춰 MQTT 서버, Django 웹 프레임워크, WIFI 통신 모듈을 활용하여 제품을 연결하고, 조작 및 관리할 수 있는 프로그램 앱을 구현했다.
Disc cutters, used as excavation tools for rocks in a Tunnel Boring Machine (TBM), naturally undergo wear during the tunneling process, involving crushing and cutting through the ground, leading to various wear types. When disc cutters reach their wear limits, they must be replaced at the appropriate time to ensure efficient excavation. General disc cutter life prediction models are typically used during the design phase to predict the total required quantity and replacement locations for construction. However, disc cutters are replaced more frequently during tunneling than initially planned. Unpredictable disc cutter replacements can easily diminish tunneling efficiency, and abnormal wear is a common cause during tunneling in complex ground conditions. This study aims to overcome the limitations of existing disc cutter life prediction models by utilizing machine data generated during tunneling to predict disc cutter wear patterns and determine the need for replacements in real-time. Artificial intelligence classification algorithms, including K-nearest Neighbors (KNN), Support Vector Machine (SVM), Decision Tree (DT), and Stacking, are employed to assess the need for disc cutter replacement. Binary classification models are developed to predict which disc cutters require replacement, while multi-class classification models are fine-tuned to identify three categories: no replacement required, replacement due to normal wear, and replacement due to abnormal wear during tunneling. The performance of these models is thoroughly assessed, demonstrating that the proposed approach effectively manages disc cutter wear and replacements in shield TBM tunnel projects.
Qingyun Gao;Yun Wang;Zhimin Zhou;Khalid A. Alnowibet
Smart Structures and Systems
/
제33권5호
/
pp.333-347
/
2024
There has been an increasing interest in the construction of smart buildings that can actively monitor and react to their surroundings. The capacity of these intelligent structures to precisely predict and respond to deflection is a crucial feature that guarantees both their structural soundness and efficiency. Conventional techniques for determining deflection often depend on intricate mathematical models and computational simulations, which may be time- and resource-consuming. Artificial intelligence (AI) algorithms have become a potent tool for anticipating and controlling deflection in intelligent structures in response to these difficulties. The term "deflection-aware smart structures" in this sense refers to constructions that have AI algorithms installed that continually monitor and analyses deflection data in order to proactively detect any problems and take appropriate action. These structures anticipate deflection across a range of operating circumstances and environmental factors by using cutting-edge AI approaches including deep learning, reinforcement learning, and neural networks. AI systems are able to predict real-time deflection with high accuracy by using data from embedded sensors and actuators. This capability enables the systems to identify intricate patterns and linkages. Intelligent buildings have the potential to self-correct in order to reduce deflection and maximize performance. In conclusion, the development of deflection-aware smart structures is a major stride forward for structural engineering and has enormous potential to enhance the performance, safety, and dependability of designed systems in a variety of industries.
Fluid pipelines, commonly utilized in the oil industry, often face efficiency and reliability issues due to sediment buildup causing erosion, corrosion, and pipe wall thinning. Traditional assessment methods involve disruptive measures like cutting or creating holes and temporarily taking pipelines out of service. A non-destructive alternative, Limited-Number-Detector Computed Tomography (LNDCT), proves cost-effective and superior. Our proposed algorithm enhances data acquisition and projections using discrete detectors, employing Co-60 as a gamma-ray source and thallium-doped sodium iodide, NaI(Tl), detectors in an arc configuration. Monte Carlo simulations aligned closely with experimental data. Optimization involved adjusting the detector aperture angle based on a primary-to-scatter ratio of gamma-ray photons. We investigated the utility of various isotopes (Co-60, Cs-137, Am-241, Ir-192) to determine optimal projection signal amplitude. The algorithm generates a large sinogram matrix, and a filtered back-projection algorithm with a Hamming filter maximizes image quality while ensuring acceptable calculation volume and time. Using four phantoms, including pipelines filled to different scales, our study evaluates LNDCT configuration, performance, and validation. The results highlight its potential for efficiently evaluating sediment in pipelines, confirming the correctness and accuracy of our proposed algorithm.
This research aims to evaluate the concept of eco-efficient water infrastructure and provides a list of case studies in order to help understand the applicability of eco-efficient water infrastructure to Asia and the Pacific. A set of indicators have been explored to assess eco-efficiency in water infrastructure for the region on a micro and macro scale. The core idea of eco-efficiency, 'more value with less impact (on the environment)', has proven to be applicable in management of water infrastructure. The fundamental elements in eco-efficient water infrastructure should encompass physical infrastructure and non-physical infrastructure, which is more needed particularly in Asian countries. The case studies have demonstrated the applicability of the concept of eco-efficient water infrastructure. The Republic of Korea has provided the case of the eco-friendly approaches to enhance dam management and its innovative solutions how to use water more efficiently through state-of-art technologies. The experiences of Singapore are some of the best evidence to establish eco-efficient water infrastructure, for instance, the NEWater project via application of cutting edge technologies (recycled water) and institutional reform in water tariff systems to conserve water as well as enhance water quality. A list of indicators to assess eco-efficiency in water infrastructure have been discussed, and the research presents a myriad of project cases which are good to represent eco-efficiency in water infrastructure, including multipurpose small dams, customized flood defense systems, eco-efficient ground water use, and eco-efficient desalination plants. The study has presented numerous indicators in five different categories: 1) the status of water availability and infrastructure; 2) production and consumption patterns of freshwater; 3) agricultural products and sources of environmental loads; 4) damages from water-caused natural disaster; and 5) urban water supply and sanitation. There are challenges as well as benefits in such indicators, since the indicators should be applied very carefully in accordance with specific socio-economic, political and policy contexts in different countries in Asia and the Pacific Region. The key to success of establishment of eco-efficient water infrastructure in Asia primarily depends on the extent to which each country is committed to balancing its development of physical as well as non-physical water infrastructure. Particularly, it is imperative for Asian countries to transform its policy focus from physical infrastructure to non-physical infrastructure. Such shift will help lead to implementation of sustainable in Asian countries.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.