• Title/Summary/Keyword: customer networks

Search Result 233, Processing Time 0.027 seconds

The Detection of Online Manipulated Reviews Using Machine Learning and GPT-3 (기계학습과 GPT3를 시용한 조작된 리뷰의 탐지)

  • Chernyaeva, Olga;Hong, Taeho
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.4
    • /
    • pp.347-364
    • /
    • 2022
  • Fraudulent companies or sellers strategically manipulate reviews to influence customers' purchase decisions; therefore, the reliability of reviews has become crucial for customer decision-making. Since customers increasingly rely on online reviews to search for more detailed information about products or services before purchasing, many researchers focus on detecting manipulated reviews. However, the main problem in detecting manipulated reviews is the difficulties with obtaining data with manipulated reviews to utilize machine learning techniques with sufficient data. Also, the number of manipulated reviews is insufficient compared with the number of non-manipulated reviews, so the class imbalance problem occurs. The class with fewer examples is under-represented and can hamper a model's accuracy, so machine learning methods suffer from the class imbalance problem and solving the class imbalance problem is important to build an accurate model for detecting manipulated reviews. Thus, we propose an OpenAI-based reviews generation model to solve the manipulated reviews imbalance problem, thereby enhancing the accuracy of manipulated reviews detection. In this research, we applied the novel autoregressive language model - GPT-3 to generate reviews based on manipulated reviews. Moreover, we found that applying GPT-3 model for oversampling manipulated reviews can recover a satisfactory portion of performance losses and shows better performance in classification (logit, decision tree, neural networks) than traditional oversampling models such as random oversampling and SMOTE.

A Study on the Introduction of Library Services Based on Blockchain (블록체인 기반의 도서관 서비스 도입 및 활용방안에 관한 연구)

  • Ro, Ji-Yoon;Noh, Younghee
    • Journal of the Korean BIBLIA Society for library and Information Science
    • /
    • v.33 no.1
    • /
    • pp.371-401
    • /
    • 2022
  • If the blockchain means storing information in a distributed environment that cannot be forged or altered, it is mentioned that this is similar to what librarians collect, preserve, and share authoritative information. In this way, this study examined blockchain technology as a way to collect and provide reliable information, increase work efficiency inside and outside the library, and strengthen cooperative networks. This study attempted to propose various ways to utilize blockchain technology in book relations based on literature surveys and case studies in other fields. To this end, this study first analyzed the field and cases of blockchain application to confirm the possibility and value of blockchain application in the library field, and proposed 12 ways to utilize it based on this. The utilization model was proposed by dividing it into operation and service sectors. In the operation sector, it is a digital identity-based user record storage and authentication function, transparent management and traceable monitoring function, voting-based personnel and recruitment system, blockchain governance-based network efficiency function, and blockchain-based next-generation device management and information integration function. The service sector includes improved book purchase and sharing efficiency due to simplification of intermediaries, digital content copyright protection and management functions, customized service provision based on customer behavior analysis, blockchain-based online learning platforms, sharing platforms, and P2P-based reliable information sharing platforms.

Development of Sentiment Analysis Model for the hot topic detection of online stock forums (온라인 주식 포럼의 핫토픽 탐지를 위한 감성분석 모형의 개발)

  • Hong, Taeho;Lee, Taewon;Li, Jingjing
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.1
    • /
    • pp.187-204
    • /
    • 2016
  • Document classification based on emotional polarity has become a welcomed emerging task owing to the great explosion of data on the Web. In the big data age, there are too many information sources to refer to when making decisions. For example, when considering travel to a city, a person may search reviews from a search engine such as Google or social networking services (SNSs) such as blogs, Twitter, and Facebook. The emotional polarity of positive and negative reviews helps a user decide on whether or not to make a trip. Sentiment analysis of customer reviews has become an important research topic as datamining technology is widely accepted for text mining of the Web. Sentiment analysis has been used to classify documents through machine learning techniques, such as the decision tree, neural networks, and support vector machines (SVMs). is used to determine the attitude, position, and sensibility of people who write articles about various topics that are published on the Web. Regardless of the polarity of customer reviews, emotional reviews are very helpful materials for analyzing the opinions of customers through their reviews. Sentiment analysis helps with understanding what customers really want instantly through the help of automated text mining techniques. Sensitivity analysis utilizes text mining techniques on text on the Web to extract subjective information in the text for text analysis. Sensitivity analysis is utilized to determine the attitudes or positions of the person who wrote the article and presented their opinion about a particular topic. In this study, we developed a model that selects a hot topic from user posts at China's online stock forum by using the k-means algorithm and self-organizing map (SOM). In addition, we developed a detecting model to predict a hot topic by using machine learning techniques such as logit, the decision tree, and SVM. We employed sensitivity analysis to develop our model for the selection and detection of hot topics from China's online stock forum. The sensitivity analysis calculates a sentimental value from a document based on contrast and classification according to the polarity sentimental dictionary (positive or negative). The online stock forum was an attractive site because of its information about stock investment. Users post numerous texts about stock movement by analyzing the market according to government policy announcements, market reports, reports from research institutes on the economy, and even rumors. We divided the online forum's topics into 21 categories to utilize sentiment analysis. One hundred forty-four topics were selected among 21 categories at online forums about stock. The posts were crawled to build a positive and negative text database. We ultimately obtained 21,141 posts on 88 topics by preprocessing the text from March 2013 to February 2015. The interest index was defined to select the hot topics, and the k-means algorithm and SOM presented equivalent results with this data. We developed a decision tree model to detect hot topics with three algorithms: CHAID, CART, and C4.5. The results of CHAID were subpar compared to the others. We also employed SVM to detect the hot topics from negative data. The SVM models were trained with the radial basis function (RBF) kernel function by a grid search to detect the hot topics. The detection of hot topics by using sentiment analysis provides the latest trends and hot topics in the stock forum for investors so that they no longer need to search the vast amounts of information on the Web. Our proposed model is also helpful to rapidly determine customers' signals or attitudes towards government policy and firms' products and services.

A Study on Detection Methodology for Influential Areas in Social Network using Spatial Statistical Analysis Methods (공간통계분석기법을 이용한 소셜 네트워크 유력지역 탐색기법 연구)

  • Lee, Young Min;Park, Woo Jin;Yu, Ki Yun
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.22 no.4
    • /
    • pp.21-30
    • /
    • 2014
  • Lately, new influentials have secured a large number of volunteers on social networks due to vitalization of various social media. There has been considerable research on these influential people in social networks but the research has limitations on location information of Location Based Social Network Service(LBSNS). Therefore, the purpose of this study is to propose a spatial detection methodology and application plan for influentials who make comments about diverse social and cultural issues in LBSNS using spatial statistical analysis methods. Twitter was used to collect analysis object data and 168,040 Twitter messages were collected in Seoul over a month-long period. In addition, 'politics,' 'economy,' and 'IT' were set as categories and hot issue keywords as given categories. Therefore, it was possible to come up with an exposure index for searching influentials in respect to hot issue keywords, and exposure index by administrative units of Seoul was calculated through a spatial joint operation. Moreover, an influential index that considers the spatial dependence of the exposure index was drawn to extract information on the influential areas at the top 5% of the influential index and analyze the spatial distribution characteristics and spatial correlation. The experimental results demonstrated that spatial correlation coefficient was relatively high at more than 0.3 in same categories, and correlation coefficient between politics category and economy category was also more than 0.3. On the other hand, correlation coefficient between politics category and IT category was very low at 0.18, and between economy category and IT category was also very weak at 0.15. This study has a significance for materialization of influentials from spatial information perspective, and can be usefully utilized in the field of gCRM in the future.

An Exploratory Study on Channel Equity of Electronic Goods (가전제품 소비자의 Channel Equity에 관한 탐색적 연구)

  • Suh, Yong-Gu;Lee, Eun-Kyung
    • Journal of Global Scholars of Marketing Science
    • /
    • v.18 no.3
    • /
    • pp.1-25
    • /
    • 2008
  • Ⅰ. Introduction Retailers in the 21st century are being told that future retailers are those who can execute seamless multi-channel access. The reason is that retailers should be where shoppers want them, when they want them anytime, anywhere and in multiple formats. Multi-channel access is considered one of the top 10 trends of all business in the next decade (Patricia T. Warrington, et al., 2007) And most firms use both direct and indirect channels in their markets. Given this trend, we need to evaluate a channel equity more systematically than before as this issue is expected to get more attention to consumers as well as to brand managers. Consumers are becoming very much confused concerning the choice of place where they shop for durable goods as there are at least 6-7 retail options. On the other hand, manufacturers have to deal with category killers, their dealers network, Internet shopping malls, and other avenue of distribution channels and they hope their retail channel behave like extensions of their own companies. They would like their products to be foremost in the retailer's mind-the first to be proposed and effectively communicated to potential customers. To enable this hope to come reality, they should know each channel's advantages and disadvantages from consumer perspectives. In addition, customer satisfaction is the key determinant of retail customer loyalty. However, there are only a few researches regarding the effects of shopping satisfaction and perceptions on consumers' channel choices and channels. The purpose of this study was to assess Korean consumers' channel choice and satisfaction towards channels they prefer to use in the case of electronic goods shopping. Korean electronic goods retail market is one of good example of multi-channel shopping environments. As the Korea retail market has been undergoing significant structural changes since it had opened to global retailers in 1996, new formats such as hypermarkets, Internet shopping malls and category killers have arrived for the last decade. Korean electronic goods shoppers have seven major channels : (1)category killers (2) hypermarket (3) manufacturer dealer shop (4) Internet shopping malls (5) department store (6) TV home-shopping (7) speciality shopping arcade. Korean retail sector has been modernized with amazing speed for the last decade. Overall summary of major retail channels is as follows: Hypermarket has been number 1 retailer type in sales volume from 2003 ; non-store retailing has been number 2 from 2007 ; department store is now number 3 ; small scale category killers are growing rapidly in the area of electronics and office products in particular. We try to evaluate each channel's equity using a consumer survey. The survey was done by telephone interview with 1000 housewife who lives nationwide. Sampling was done according to 2005 national census and average interview time was 10 to 15 minutes. Ⅱ. Research Summary We have found that seven major retail channels compete with each other within Korean consumers' minds in terms of price and service. Each channel seem to have its unique selling points. Department stores were perceived as the best electronic goods shopping destinations due to after service. Internet shopping malls were perceived as the convenient channel owing to price checking. Category killers and hypermarkets were more attractive in both price merits and location conveniences. On the other hand, manufacturers dealer networks were pulling customers mainly by location and after service. Category killers and hypermarkets were most beloved retail channel for Korean consumers. However category killers compete mainly with department stores and shopping arcades while hypermarkets tend to compete with Internet and TV home shopping channels. Regarding channel satisfaction, the top 3 channels were service-driven retailers: department stores (4.27); dealer shop (4.21); and Internet shopping malls (4.21). Speciality shopping arcade(3.98) were the least satisfied channels among Korean consumers. Ⅲ. Implications We try to identify the whole picture of multi-channel retail shopping environments and its implications in the context of Korean electronic goods. From manufacturers' perspectives, multi-channel may cause channel conflicts. Furthermore, inter-channel competition draws much more attention as hypermarkets and category killers have grown rapidly in recent years. At the same time, from consumers' perspectives, 'buy where' is becoming an important buying decision as it would decide the level of shopping satisfaction. We need to develop the concept of 'channel equity' to manage multi-channel distribution effectively. Firms should measure and monitor their prime channel equity in regular basis to maximize their channel potentials. Prototype channel equity positioning map has been developed as follows. We expect more studies to develop the concept of 'channel equity' in the future.

  • PDF

Effects of Customers' Relationship Networks on Organizational Performance: Focusing on Facebook Fan Page (고객 간 관계 네트워크가 조직성과에 미치는 영향: 페이스북 기업 팬페이지를 중심으로)

  • Jeon, Su-Hyeon;Kwahk, Kee-Young
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.2
    • /
    • pp.57-79
    • /
    • 2016
  • It is a rising trend that the number of users using one of the social media channels, the Social Network Service, so called the SNS, is getting increased. As per to this social trend, more companies have interest in this networking platform and start to invest their funds in it. It has received much attention as a tool spreading and expanding the message that a company wants to deliver to its customers and has been recognized as an important channel in terms of the relationship marketing with them. The environment of media that is radically changing these days makes possible for companies to approach their customers in various ways. Particularly, the social network service, which has been developed rapidly, provides the environment that customers can freely talk about products. For companies, it also works as a channel that gives customized information to customers. To succeed in the online environment, companies need to not only build the relationship between companies and customers but focus on the relationship between customers as well. In response to the online environment with the continuous development of technology, companies have tirelessly made the novel marketing strategy. Especially, as the one-to-one marketing to customers become available, it is more important for companies to maintain the relationship marketing with their customers. Among many SNS, Facebook, which many companies use as a communication channel, provides a fan page service for each company that supports its business. Facebook fan page is the platform that the event, information and announcement can be shared with customers using texts, videos, and pictures. Companies open their own fan pages in order to inform their companies and businesses. Such page functions as the websites of companies and has a characteristic of their brand communities such as blogs as well. As Facebook has become the major communication medium with customers, companies recognize its importance as the effective marketing channel, but they still need to investigate their business performances by using Facebook. Although there are infinite potentials in Facebook fan page that even has a function as a community between users, which other platforms do not, it is incomplete to regard companies' Facebook fan pages as communities and analyze them. In this study, it explores the relationship among customers through the network of the Facebook fan page users. The previous studies on a company's Facebook fan page were focused on finding out the effective operational direction by analyzing the use state of the company. However, in this study, it draws out the structural variable of the network, which customer committment can be measured by applying the social network analysis methodology and investigates the influence of the structural characteristics of network on the business performance of companies in an empirical way. Through each company's Facebook fan page, the network of users who engaged in the communication with each company is exploited and it is the one-mode undirected binary network that respectively regards users and the relationship of them in terms of their marketing activities as the node and link. In this network, it draws out the structural variable of network that can explain the customer commitment, who pressed "like," made comments and shared the Facebook marketing message, of each company by calculating density, global clustering coefficient, mean geodesic distance, diameter. By exploiting companies' historical performance such as net income and Tobin's Q indicator as the result variables, this study investigates influence on companies' business performances. For this purpose, it collects the network data on the subjects of 54 companies among KOSPI-listed companies, which have posted more than 100 articles on their Facebook fan pages during the data collection period. Then it draws out the network indicator of each company. The indicator related to companies' performances is calculated, based on the posted value on DART website of the Financial Supervisory Service. From the academic perspective, this study suggests a new approach through the social network analysis methodology to researchers who attempt to study the business-purpose utilization of the social media channel. From the practical perspective, this study proposes the more substantive marketing performance measurements to companies performing marketing activities through the social media and it is expected that it will bring a foundation of establishing smart business strategies by using the network indicators.

Sentiment Analysis of Movie Review Using Integrated CNN-LSTM Mode (CNN-LSTM 조합모델을 이용한 영화리뷰 감성분석)

  • Park, Ho-yeon;Kim, Kyoung-jae
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.4
    • /
    • pp.141-154
    • /
    • 2019
  • Rapid growth of internet technology and social media is progressing. Data mining technology has evolved to enable unstructured document representations in a variety of applications. Sentiment analysis is an important technology that can distinguish poor or high-quality content through text data of products, and it has proliferated during text mining. Sentiment analysis mainly analyzes people's opinions in text data by assigning predefined data categories as positive and negative. This has been studied in various directions in terms of accuracy from simple rule-based to dictionary-based approaches using predefined labels. In fact, sentiment analysis is one of the most active researches in natural language processing and is widely studied in text mining. When real online reviews aren't available for others, it's not only easy to openly collect information, but it also affects your business. In marketing, real-world information from customers is gathered on websites, not surveys. Depending on whether the website's posts are positive or negative, the customer response is reflected in the sales and tries to identify the information. However, many reviews on a website are not always good, and difficult to identify. The earlier studies in this research area used the reviews data of the Amazon.com shopping mal, but the research data used in the recent studies uses the data for stock market trends, blogs, news articles, weather forecasts, IMDB, and facebook etc. However, the lack of accuracy is recognized because sentiment calculations are changed according to the subject, paragraph, sentiment lexicon direction, and sentence strength. This study aims to classify the polarity analysis of sentiment analysis into positive and negative categories and increase the prediction accuracy of the polarity analysis using the pretrained IMDB review data set. First, the text classification algorithm related to sentiment analysis adopts the popular machine learning algorithms such as NB (naive bayes), SVM (support vector machines), XGboost, RF (random forests), and Gradient Boost as comparative models. Second, deep learning has demonstrated discriminative features that can extract complex features of data. Representative algorithms are CNN (convolution neural networks), RNN (recurrent neural networks), LSTM (long-short term memory). CNN can be used similarly to BoW when processing a sentence in vector format, but does not consider sequential data attributes. RNN can handle well in order because it takes into account the time information of the data, but there is a long-term dependency on memory. To solve the problem of long-term dependence, LSTM is used. For the comparison, CNN and LSTM were chosen as simple deep learning models. In addition to classical machine learning algorithms, CNN, LSTM, and the integrated models were analyzed. Although there are many parameters for the algorithms, we examined the relationship between numerical value and precision to find the optimal combination. And, we tried to figure out how the models work well for sentiment analysis and how these models work. This study proposes integrated CNN and LSTM algorithms to extract the positive and negative features of text analysis. The reasons for mixing these two algorithms are as follows. CNN can extract features for the classification automatically by applying convolution layer and massively parallel processing. LSTM is not capable of highly parallel processing. Like faucets, the LSTM has input, output, and forget gates that can be moved and controlled at a desired time. These gates have the advantage of placing memory blocks on hidden nodes. The memory block of the LSTM may not store all the data, but it can solve the CNN's long-term dependency problem. Furthermore, when LSTM is used in CNN's pooling layer, it has an end-to-end structure, so that spatial and temporal features can be designed simultaneously. In combination with CNN-LSTM, 90.33% accuracy was measured. This is slower than CNN, but faster than LSTM. The presented model was more accurate than other models. In addition, each word embedding layer can be improved when training the kernel step by step. CNN-LSTM can improve the weakness of each model, and there is an advantage of improving the learning by layer using the end-to-end structure of LSTM. Based on these reasons, this study tries to enhance the classification accuracy of movie reviews using the integrated CNN-LSTM model.

A study on the Regulatory Environment of the French Distribution Industry and the Intermarche's Management strategies

  • Choi, In-Sik;Lee, Sang-Youn
    • The Journal of Industrial Distribution & Business
    • /
    • v.3 no.1
    • /
    • pp.7-16
    • /
    • 2012
  • Despite the enforcement of SSM control laws such as 'the Law of Developing the Distribution Industry (LDDI)' and 'the Law of Promoting Mutual Cooperation between Large and Small/medium Enterprises (LPMC)' stipulating the business adjustment system, the number of super-supermarkets (SSMs) has ever been expanding in Korea. In France, however, Super Centers are being regulated most strongly and directly in the whole Europe viewing that there is not a single SSM in Paris, which is emphasized to be the outcome from French government's regulation exerted on the opening of large scale retail stores. In France, the authority to approve store opening is deeply centralized and the store opening regulation is a socio-economic regulation driven by economic laws whereas EU strongly regulates the distribution industry. To control the French distribution industry, such seven laws and regulations as Commission départementale d'urbanisme commercial guidelines (CDLIC) (1969), the Royer Law (1973), the Doubin Law (1990), the Sapin Law (1993), the Raffarin Law (1996), solidarite et renouvellement urbains (SRU) (2000), and Loi de modernisation de l'économie (LME) (2009) have been promulgated one by one since the amendment of the Fontanet guidelines, through which commercial adjustment laws and regulations have been complemented and reinforced while regulatory measures have been taken. Even in the course of forming such strong regulatory laws, InterMarche, the largest supermarket chain in France, has been in existence as a global enterprise specialized in retail distribution with over 4,000 stores in Europe. InterMarche's business can be divided largely into two segments of food and non-food. As a supermarket chain, InterMarche's food segment has 2,300 stores in Europe and as a hard-discounter store chain in France, Netto has 420 stores. Restaumarch is a chain of traditional family restaurants and the steak house restaurant chain of Poivre Rouge has 4 restaurants currently. In addition, there are others like Ecomarche which is a supermarket chain for small and medium cities. In the non-food segment, the DIY and gardening chain of Bricomarche has a total of 620 stores in Europe. And the car-related chain of Roady has a total of 158 stores in Europe. There is the clothing chain of Veti as well. In view of InterMarche's management strategies, since its distribution strategy is to sell goods at cheap prices, buying goods cheap only is not enough. In other words, in order to sell goods cheap, it is all important to buy goods cheap, manage them cheap, systemize them cheap, and transport them cheap. In quality assurance, InterMarche has guaranteed the purchase safety for consumers by providing its own private brand products. InterMarche has 90 private brands of its own, thus being the retailer with the largest number of distributor brands in France. In view of its IT service strategy, InterMarche is utilizing a high performance IT system so as to obtainas much of the market information as possible and also to find out the best locations for opening stores. In its global expansion strategy of international alliance, InterMarche has established the ALDIS group together with the distribution enterprises of both Spain and Germany in order to expand its food purchase, whereas in the non-food segment, it has established the ARENA group in alliance with 11 international distribution enterprises. Such strategies of InterMarche have been intended to find out the consumer needs for both price and quality of goods and to secure the purchase and supply networks which are closely localized. It is necessary to cope promptly with the constantly changing circumstances through being unified with relevant regions and by providing diversified customer services as well. In view of the InterMarche's positive policy for promoting local partnerships as well as the assistance for enhancing the local economic structure, implications are existing for those retail distributors of our country.

  • PDF

Relationships among CEO Image, Corporate Image and Employment Brand Value in Fashion Industry

  • Ko, Eun-Ju;Taylor, Charles R.;Wagner, Udo;Ji, Hyun-Ah
    • Journal of Global Scholars of Marketing Science
    • /
    • v.18 no.4
    • /
    • pp.307-331
    • /
    • 2008
  • The CEO and the Corporate Image is considered very important in the aspect of marketing. The fact that CEO image itself influences the company or value of the product directly and indirectly has been verified through many cases. Recently, the differentiation of products and services between companies became difficult because the disparity in technique between companies retrenched. As a result, the rate of people who decide to purchase or invest their money based on the corporate image or reputation has been increased. Also in the knowledge society like today, the talented employees are the company's customer and the company's necessity for managing those brains of marketing perspective on how to satisfy and attract the customers is being embossed. The Fashion industry is one of the most value-added industry and in those value-added businesses, the most important factor is the human resources' knowledge power. However the study of the relationships among the CEO image, the corporate image and employment brand value in fashion industry has not been carried out yet. This research considers that dynamic relationship exists among the CEO image, corporate image and employment brand value that affects a company's main goal of pursuing benefits and intends to investigate the relationships of the three concepts. The specific purposes of this study were, 1) to analyze the impact of CEO image on a corporate image, 2) to analyze the impact of corporate image on employment brand value, 3) to analyze the impact of CEO image on employment brand value, 4) to analyze whether corporate image plays a mediating role in the relationship between CEO image and employment brand value or not. A survey design with a structured questionnaire was employed for this research. A convenience sample of 398 subjects was selected from two groups, which are university students majoring in fashion and practitioners working in fashion industry. For the data analysis, descriptive statistic (i.e., frequency, percentage), factor analysis, and multiple regression analysis were used by utilizing SPSS 12.0 for Windows program. The results for this research are as follows, first, the study of the impact of CEO image (i.e., Managerial Competence, Reliability/Leadership, Personal Attractiveness) on corporate image (i.e., Product Image, Corporate Social Responsibility Image, Corporate Cultural Image) brought conclusion that the CEO image generally affected the corporate image in fashion industry. Managerial Competence and Reliability/Leadership affected Product Image, Corporate Social Responsibility Image and Corporate Cultural Image. However, while CEO's Personal Attractiveness affected Product Image and Corporate Social Responsibility Image, it did not affect Corporate Cultural Image. Second, the study of the impact of corporate image on employment brand value brought conclusion that corporate image (i.e., Product Image, Corporate Social Responsibility Image, Corporate Cultural Image) affected employment brand value. Corporate Cultural Image affected employment brand value the most and then the Corporate Social Responsibility Image and Product Image. Third, the study of the impact of CEO image on employment brand value brought conclusion that CEO image (i.e., Managerial Competence, Reliability/Leadership, Personal Attractiveness) affected the employment brand value. CEO's Reliability/Leadership affected the employment brand value the most and then CEO's Personal Attractiveness and CEO's Managerial Competence. Forth, the study examined whether corporate image plays a mediating role in relationship of CEO image and employment brand value and concluded that it does. Corporate image played a full mediating role between CEO's Managerial Competence and employment brand value while it played a partial mediating role between CEO's Reliability/Leadership and CEO's Personal Attractiveness. This study is meaningful in a sense that it examines the relationship among the CEO image, corporate image and employment brand value which has not been carried out yet in fashion industry. It will ultimately contribute to the success of a fashion company by providing useful information of establishing strategies for managing proper the CEO and the corporate image to the fashion company and operating the talented employees.

  • PDF

Application of Digital Content Technology for Veterans Diplomacy (디지털 콘텐츠 기술을 활용한 보훈외교의 발전 방향)

  • So, Byungsoo;Park, Hyungi
    • Journal of Public Diplomacy
    • /
    • v.3 no.2
    • /
    • pp.35-52
    • /
    • 2023
  • Korea has developed as an influential country over Asia and all over the world based on remarkable economic development. And the background of this development was possible due to the existence of those who sacrificed precious lives and contributed to the nation's existence in the past crisis. Every year, Korea holds an annual commemorative event with people of national merit, Korean War veterans, and their families, expressing gratitude for sacrifices and contributions at home and abroad, and providing economic support. The tragedy of the Korean War and the pro-democracy movement in Korea over the past half century will one day become a history of the distant past over time. As generations change and the purpose and method of exchange by region change, the tragic situation that occurred earlier and the way people sacrificed for the country are expected to be different from before. In particular, it is true that the number of Korean War veterans and their families is gradually decreasing as they are now old. In addition, due to the outbreak of global infectious diseases such as COVID-19, it is difficult to plan and conduct face to face events as well as before. Currently, Korea's digital technology is introducing various methods. 5G communication networks, smart-phones, tablet PCs, and smart devices that can experience virtual reality are already used in our real lives. Business meetings are held in a metaverse environment, and concerts by famous singers are held in an online environment. Artificial intelligence technology has also been introduced in the field of human resource recruitment and customer response services, improving the work efficiency of companies. And it seems that this technology can be used in the field of veterans. In particular, there is a metaverse technology that can vividly show the situation during the Korean War, and a way to digitalize the voices and facial expressions of currently surviving veterans to convey their memories and lessons to future generations in the long run. If this digital technology method is realized on an online platform to hold a veterans' celebration event, veterans and their families on the other side of the world will be able to participate in the event more conveniently.